Structures and Energetics of H₆⁺ Clusters

Qiang Hao,^{†,‡} Andrew C. Simmonett,[‡] Yukio Yamaguchi,[‡] De-Cai Fang,[†] and Henry F. Schaefer III^{*,‡}

College of Chemistry, Beijing Normal University, Beijing, 100875, China, and Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602

Received: June 24, 2009; Revised Manuscript Received: August 31, 2009

Theoretical investigations of the equilibrium structures and associated isomerization reactions of the hydrogen clusters H_6^+ have been carried out. Three equilibrium structures and three isomerization transition states were located on the electronic doublet and quartet states of the respective potential energy surfaces. The research employed ab initio self-consistent-field (SCF), coupled cluster (CC) with single and double excitations (CCSD), CCSD with perturbative triple excitations (CCSD(T)), and full triple excitations (CCSDT) wave functions and a wide variety of correlation-consistent polarized valence cc-pVXZ and aug-cc-pVXZ (where X = D, T, Q) basis sets. For each structure the geometry, energy, dipole moment, harmonic vibrational frequencies, and infrared intensities are predicted. Complete active space SCF (CASSCF) and multireference configuration interaction (MRCI) wave functions are used to analyze the effect of correlation on physical properties and energetics. Extensive focal point analyses (including CCSDTQ and full CI energies and basis sets up to sextuple zeta) are used to obtain complete basis set (CBS) limit energies. The H_2^+ -core H_6^+ cluster with D_{2d} symmetry is the global minimum, lying 3.9 $(4.2) \pm 0.1$ kcal mol⁻¹ below the H₃⁺-core H₆⁺ cluster with C_s symmetry, where zero-point vibrational energy (ZPVE) corrected value are shown in parentheses. The barrier of the isomerization reaction between these two structures is 7.4 (5.2) \pm 0.1 kcal mol⁻¹. The dissociation energies for the H₂⁺-core H₆⁺ isomer [H₆⁺ (D_{2d}) \rightarrow 2H₂ + H₂⁺] and the H₃⁺-core H₆⁺ isomer [H₆⁺ (C₃) \rightarrow H₃⁺ + H₂ + H] are 57.5 (50.9) \pm 0.1 and 12.3 (8.3) \pm 0.1 kcal mol^{-1} , respectively.

Introduction

The hydrogen cluster cations are the simplest molecular aggregate systems and have attracted considerable attention from both experimental and theoretical sides over almost a century.¹⁻²⁵ It is well-known that the H_n^+ clusters are easily produced by electron bombardment or radiation-induced ionization of gaseous H₂. In 1912, J. J. Thomson¹ discovered H_3^+ , and later research showed that the triangular H_3^+ ion subsequently attracts neutral H_2 to form larger odd-membered H_{2m+1}^{++} cluster cations.^{4,5} It has been shown that even-membered H_{2m+2}^{++} clusters cations^{4,6,9,12} are produced in ionized H₂ gas, although their yields are generally much smaller than those for the odd-membered H_{2m+1}^+ clusters. Kirchner and Bowers¹² found the relative yields of the even-membered H_{2m+2}^{++} cluster to be $H_6^+ \gg H_8^+ > H_{10}^+ > H_4^+$. The yield of H_6^+ was observed to be by far the largest. This important cluster with an H2⁺-core (two H2 molecules bound to the central core) has also been investigated by electron spin resonance (ESR) spectroscopy.¹⁹⁻²¹

An early ab initio study⁸ predicted that the H_6^+ cluster has a H_3^+ -core type structure with C_s symmetry. However, later studies^{10,16} revealed a more favorable H_2^+ -core H_6^+ cluster with D_{2d} symmetry. In 2007, Kumagai, Inagaki, Kariya, Ushida, Shimizu, and Kumada²¹ optimized the geometries of these two isomers at the cc-pVTZ MP2 level of theory, refining the energies with cc-pVQZ QCISD(T) single-point computations. Later, Kakizaki, Takayanagi, and Shiga²² reported a study at the cc-pVTZ CCSD(T) level of theory. More recently, Scheier and co-workers²⁴ searched the H_6^+ potential energy surface and studied six minima at the aug-cc-pVTZ

QCISD level of theory. To our knowledge, these three theoretical studies are the highest levels of theory performed to date.

In the present research, the six different H_6^+ structures shown in Scheme 1 are systematically studied using a hierarchical series of highly accurate quantum chemical methods. Spectroscopic fingerprints are determined for these six stationary points to aid future experiments. The relationships between these isomers are discussed, both energetically and structurally, as not all of the structures are minima on the potential energy surface.

Electronic Structure Considerations

The electronic ground state of the H_2^+ -core H_6^+ cluster with D_{2d} symmetry(1) in Scheme 1 has been found to be the ²A₁ state with electron configuration

$$(1a_1)^2 (1b_2)^2 (2a_1) \qquad \tilde{X}^2 A_1$$
 (1)

The five other H_6^+ cluster structures in Scheme 1 have the following symmetries and electron configurations:

 H_3^+ -core cluster with C_s symmetry (2)

$$(1a')^2(2a')^2(3a') \qquad \tilde{X}^2A'$$
 (2)

 H_3^+ -core cluster with D_{3h} symmetry (3)

$$(1a'_{1})^{2}(1e')^{2}(2a'_{1}) \qquad \tilde{X}^{4}A'_{1}$$
 (3)

^{*} Corresponding author, sch@uga.edu.

Beijing Normal University.

^{*} University of Georgia.

 H_2^+ -core cluster with D_{2h} symmetry (4)

$$(1a_{g})^{2}(1b_{2u})^{2}(2a_{g}) \qquad \tilde{X}^{2}A_{g} \qquad (4)$$

 H_3^+ -core cluster with C_s symmetry (5)

$$(1a')^2(2a')^2(3a') \qquad \tilde{X}^2A'$$
 (5)

 H_3^+ -core cluster with $C_{2\nu}$ symmetry (6)

$$(1a_1)^2 (2a_1)^2 (3a_1) \qquad \tilde{X}^2 A_1$$
 (6)

As will be discussed in some detail later, structures 1-3 are equilibrium geometries (minima), while structures 4-6 are found to be transition states (first-order saddle points) for isomerization reactions.

Theoretical Methods

In this research the correlation-consistent valence polarized basis sets cc-pVXZ and aug-cc-pVXZ (where X = D, T, Q, 5, 6) developed by Dunning and co-workers^{26–28} were utilized. Zerothorder descriptions of stationary points were obtained using restricted Hartree—Fock (RHF) SCF theory for closed-shell singlet molecules, and both restricted open-shell HF (ROHF) and unrestricted HF (UHF) for open-shell molecules. Dynamic correlation effects were included using coupled-cluster (CC)^{29–31} methods with single and double excitations (CCSD),^{32–35} CCSD with perturbative triple excitations (CCSD(T)),^{36–40} and full triple excitations (CCSDT).^{41–43} In this text the CC wave functions adopting RHF (ROHF) references are denoted as RCCSD and RCCSD(T), while those with UHF references are designated as UCCSD, UCCSD(T), and UCCSDT. It is important to note that the coupled cluster treatment was fully unrestricted for both ROHF and UHF references.

In order to analyze changes in geometries and physical properties of H_6^+ with respect to the level of correlation treatment, full valence five electrons in six molecular orbitals (5e/6MO) complete active space self-consistent-field (CASSCF)^{44,45} and internally contracted multireference configuration interaction (MRCI)^{46,47} wave functions were constructed at the aug-cc-pVTZ UCCSD(T) optimized geometries. The numbers of configuration state functions (CSFs) for the CASSCF wave functions are 115 (1, 2, and 5); 40 (3), 59 (4), and 64 (6). The number of CSFs for the internally contracted MRCI wave functions are 93785 for 1, 175763 for 2 and 5, 81878 for 3, 45809 for 4, and 87882 for 6. Because of the light masses involved, diagonal Born–Oppenheimer corrections (DBOC)⁴⁸ were computed at the aug-cc-pVQZ RHF (UHF) level of theory.

Focal point analyses (FPA)⁴⁹⁻⁵³ using the ROHF, CCSD, CCSD(T), CCSDT, CC with up to full quadruple excitations

SCHEME 1: Sketches of Six Different H₆⁺ Structures

(CCSDTQ),^{54,55} and full CI (FCI)⁵⁶ levels of theory have been performed employing the correlation consistent polarized valence family of basis sets of Dunning and co-workers (cc-pVXZ, X = D, T, Q, 5, 6) to obtain energetic values extrapolated to the complete basis set (CBS) limit. Geometries used for the focal point analysis were optimized at the aug-cc-pVQZ RCCSD(T) level of theory. The total energy extrapolation was partitioned in two terms. The first term corresponds to the total SCF energy and was fitted to the functional form⁵⁷

$$E_{\rm SCF}(X) = A + Be^{-CX} \tag{7}$$

where *A*, *B*, and *C* are fitting parameters from SCF energies, and *X* is the cardinal number corresponding to the maximum angular momentum of the basis set. The correlation energy was extrapolated using the formula⁵⁸

$$E_{\rm CORR}(X) = E + FX^{-3} \tag{8}$$

where E and F are fitting parameters from correlation energies and X is the cardinal number mentioned above.

The structures of the stationary points were optimized using analytic derivative methods.^{35,38,39,59} Dipole moments were determined analytically for all wave functions as first derivatives of the total energy with respect to external electric field. Harmonic vibrational frequencies were computed via finite differences of analytic first derivatives (gradients) for RCCSD and RCCSD(T) wave functions of all structures and UCCSD, UCCSD(T) wave functions of structure **3**. For remaining wave functions harmonic vibrational frequencies and associated infrared (IR) intensities were determined using analytic second derivative methods.^{60,61} Electronic structure computations were carried out using the AcesII (Mainz–Austin–Budapest version),^{62,63} Molpro,⁶⁴ and Psi3⁶⁵ quantum chemistry packages.

Results and Discussion

The representative optimized geometries of the structures **1**-6 at six levels of theory with four basis sets (cc-pVTZ, aug-cc-pVQZ, aug-cc-pVQZ) are depicted in Figures 1-6. The corresponding total energies and physical properties for the six structures are provided in Tables 1-6. Natural orbital electron occupation numbers for the valence MOs of the CASSCF wave functions (at the aug-cc-pVTZ UCCSD(T) optimized geometries) are displayed in Table 7. The analogous geometries of H₂⁺, H₂, H₃⁺(D_{3h}), and H₅⁺(C_{2v}) are given in Figure 7.

CASSCF and MRCI Wave Functions. The reference configuration (Φ_1) and several excited configurations for the full valence (5e/6MO) CASSCF and MRCI wave functions of the six H_6^+ structures are presented in the following discussion.

For isomer **1**, the CASSCF wave function is written in terms of its natural orbitals (NOs) as

$$\Psi = 0.986\Phi_1[(1a_1)^2(1b_2)^2(2a_1)] - 0.088\Phi_2[(1a_1)^2(2a_1)(1e)^2] + \dots \quad (9)$$

The analogous MRCI wave function is described in terms of NOs by

$$\Psi = 0.975 \Phi_1[(1a_1)^2(1b_2)^2(2a_1)] - 0.080 \Phi_2[(1a_1)^2(2a_1)(1e)^2] + \dots \quad (10)$$

Only the two CSFs whose CI coefficients are greater in absolute value than 0.05 are shown above. These confirm the predominantly single-reference nature of this isomer. The excited configuration (Φ_2) represents a double excitation from the 1b₂ MO to the lowest unoccupied MO (LUMO), (1b₂)² \rightarrow (1e)².

For isomer **2**, the CASSCF wave function is written in terms of NOs as

$$\Psi = 0.986\Phi_1[(1a')^2(2a')^2(3a')] - 0.098\Phi_2[(2a')^2(3a')(1a'')^2] - 0.084\Phi_3[(1a')^2(3a')(5a')^2] - 0.082\Phi_4[(1a')^2(3a')(4a')^2] + \dots (11)$$

The analogous MRCI wave function is described in terms of NOs by

$$\begin{split} \Psi &= 0.980 \Phi_1[(1a')^2(2a')^2(3a')] - 0.088 \Phi_2[(2a')^2(3a')(1a'')^2] - \\ & 0.078 \Phi_3[(1a')^2(3a')(5a')^2] - 0.076 \Phi_4[(1a')^2(3a')(4a')^2] + \dots \end{split}$$

There are the only four CSFs with coefficients greater in absolute value than 0.05, and they also confirm the predominantly single-reference nature of this molecule. The three double excitations, $\Phi_2 [(1a')^2 \rightarrow (1a'')^2]$, $\Phi_3 [(2a')^2 \rightarrow (5a')^2]$, $\Phi_4 [(2a')^2 \rightarrow (4a')^2]$, are most important for both the CASSCF and MRCI wave functions.

For the quartet state isomer **3**, the CASSCF wave function is written in terms of NOs as

$$\Psi = 0.992 \Phi_1[(1a'_1)^2(1e')^2(2a'_1)] - 0.119 \Phi_2[(1e')^2(2a'_1)(2e')^2] + \dots \quad (13)$$

The analogous MRCI wave function is described in terms of NOs by

$$\Psi = 0.988 \Phi_1[(1a'_1)^2(1e')^2(2a'_1)] - 0.110 \Phi_2[(1e')^2(2a'_1)(2e')^2] + \dots \quad (14)$$

6	b a			b
	ROHE cc-pVTZ	1.0725	1,1810	0.7756
	ROHF aug-cc-pVTZ	1.0741	1,1811	0.7758
	ROHF cc-pVQZ	1.0731	1.1818	0.7752
	ROHF aug-cc-pVQZ	1.0734	1.1818	0.7753
	UHF cc-pVTZ	1.0449	1.1841	0.7780
	UHF aug-cc-pVTZ	1.0461	1.1843	0.7782
	UHF cc-pVQZ	1.0450	1.1850	0.7776
	UHF aug-cc-pVQZ	1.0453	1.1849	0.7777
	RCCSD cc-pVTZ	1.0389	1.1596	0.7902
	RCCSD aug-cc-pVTZ	1.0406	1.1595	0.7907
	RCCSD cc-pVQZ	1.0389	1.1590	0.7898
	RCCSD aug-cc-pVQZ	1.0395	1.1590	0.7900
	UCCSD cc-pVTZ	1.0385	1.1598	0.7903
	UCCSD aug-cc-pVTZ	1.0402	1.1596	0.7908
	UCCSD cc-pVQZ	1.0385	1.1592	0.7899
	UCCSD aug-cc-pVQZ	1.0391	1.1592	0.7901
	RCCSD(T) cc-pVTZ	1.0382	1.1593	0.7908
	RCCSD(T) aug-cc-pVTZ	1.0399	1.1591	0.7914
	RCCSD(T) cc-pVQZ	1.0382	1.1586	0.7905
	RCCSD(T) aug-cc-pVQZ	1.0388	1.1587	0.7906
	UCCSD(T) cc-pVTZ	1.0382	1.1593	0.7908
	UCCSD(T) aug-cc-pVTZ	1.0399	1.1591	0.7914
	UCCSD(T) cc-pVQZ	1.0382	1.1586	0.7905
	UCCSD(T) aug-cc-pVQZ	1.0389	1.1586	0.7906
	UCCSDT cc-pVTZ	1.0381	1.1594	0.7910
	UCCSDT aug-cc-pVTZ	1.0399	1.1592	0.7915

Figure 1. Predicted geometries for **1**, the \tilde{X} ²A₁ equilibrium geometry of the H₆⁺ molecule in D_{2d} symmetry (isomer **1**). Bond lengths are in angstroms.

These confirm that **3**, like the other minima, does not exhibit excessive multireference character. The most important excited configuration (Φ_2) corresponds to a double excitation from the lowest energy MO to the LUMO, $(1a'_1)^2 \rightarrow (2e')^2$.

For transition state **4**, the CASSCF wave function is written in terms of NOs as

$$\Psi = 0.986 \Phi_1 [(1a_g)^2 (1b_{2u})^2 (2a_g)] - 0.088 \Phi_2 [(1a_g)^2 (2a_g) (1b_{3u})^2] + \dots \quad (15)$$

The analogous MRCI wave function is described in terms of NOs by

$$\Psi = 0.975 \Phi_1 [(1a_g)^2 (1b_{2u})^2 (2a_g)] - 0.080 \Phi_2 [(1a_g)^2 (2a_g) (1b_{3u})^2] + \dots \quad (16)$$

Structure **4** possesses a wave function very similar to that for isomer **1**, and the dominant excited configuration corresponds to a double excitation from the $1b_{2u}$ MO to the LUMO, $(1b_{2u})^2 \rightarrow (1b_{3u})^2$.

For transition state **5**, the CASSCF wave function is written in terms of NOs as

$$\Psi = 0.981 \Phi_1[(1a')^2(2a')^2(3a')] - 0.094 \Phi_2[(1a')^2(2a')(3a')(4a')] - 0.090 \Phi_3[(2a')^2(3a')(1a'')^2] - 0.074 \Phi_4[(1a')^2(3a')(4a')^2] - 0.056 \Phi_5[(1a')^2(3a')(5a')^2] + \dots (17)$$

at Vibrational Energy	rgy (ZPVE in 1		T (-				n	, ,			
/	energy	$\omega_1(a_1)$	$\omega_2(a_1)$	$\omega_3(a_1)$	$\omega_4(b_1)$	$\omega_5(b_2)$	$\omega_6(b_2)$	$\omega_{7}(e)$	$\omega_8(e)$	$\omega_9(e)$	ZPVE
E	-2.935134	4056(0.0)	2024(0.0)	845(0.0)	66(0.0)	3992(941.8)	594(3019.9)	1253(25.4)	883(13.3)	361(6.6)	23.69
ROHF	-2.935422	4052(0.0)	2015(0.0)	842(0.0)	66(0.0)	3989(937.3)	587(3010.4)	1246(29.5)	875(11.6)	356(7.2)	23.60
HF	-2.936389	4051(0.0)	2014(0.0)	840(0.0)	66(0.0)	3987(941.9)	575(3011.9)	1244(27.8)	875(12.0)	356(7.3)	23.57
ROHF	-2.936469	4051(0.0)	2012(0.0)	840(0.0)	64(0.0)	3987(940.1)	574(3010.0)	1241(29.3)	872(11.5)	355(7.3)	23.54
ĹL	-2.939068	4033(0.0)	2089(0.0)	866(0.0)	68(0.0)	3944(1197.2)	711(2919.0)	1206(18.9)	805(20.2)	359(4.3)	23.52
UHF	-2.939333	4029(0.0)	2080(0.0)	864(0.0)	67(0.0)	3940(1188.9)	705(2909.8)	1194(23.5)	797(17.9)	352(5.3)	23.41
н	-2.940323	4028(0.0)	2080(0.0)	861(0.0)	68(0.0)	3939(1196.6)	697(2911.2)	1194(21.6)	796(18.5)	353(5.1)	23.38
C UHF	-2.940399	4028(0.0)	2079(0.0)	861(0.0)	66(0.0)	3938(1193.6)	696(2909.8)	1189(23.4)	793(17.7)	351(5.4)	23.35
CSD	-3.030847	3862(0.0)	2095(0.0)	905(0.0)	71(0.0)	3782(-)	1010(-)	1185(-)	722(-)	359(-)	23.24
Z RCCSD	-3.031768	3853(0.0)	2087(0.0)	904(0.0)	64(0.0)	3773(-)	1006(-)	1163(-)	717(-)	350(-)	23.08
CCSD	-3.034390	3859(0.0)	2088(0.0)	903(0.0)	(0.0)69	3779(-)	1002(-)	1166(-)	716(-)	351(-)	23.11
Z RCCSD	-3.034636	3856(0.0)	2087(0.0)	902(0.0)	68(0.0)	3777(-)	1002(-)	1155(-)	(-)669	303(-)	22.88
CSD	-3.034046	3861(0.0)	2096(0.0)	905(0.0)	71(0.0)	3781(1046.2)	1012(969.8)	1184(57.2)	721(317.6)	358(435.1)	23.23
C UCCSD	-3.034961	3852(0.0)	2088(0.0)	904(0.0)	64(0.0)	3772(1035.9)	1008(964.6)	1163(72.1)	715(298.7)	350(427.6)	23.08
CSD	-3.037598	3858(0.0)	2088(0.0)	903(0.0)	69(0.0)	3778(1044.5)	1004(963.1)	1165(68.4)	714(300.8)	351(430.9)	23.10
Z UCCSD	-3.040520	3856(0.0)	2085(0.0)	903(0.0)	65(0.0)	3776(1042.2)	1002(962.8)	1156(74.7)	710(294.2)	348(428.3)	23.04
(CSD(T)	-3.037667	3854(0.0)	2098(0.0)	906(0.0)	71(0.0)	3775(-)	1029(-)	1181(-)	710(-)	357(-)	23.20
Z RCCSD(T)	-3.038659	3845(0.0)	2090(0.0)	905(0.0)	64(0.0)	3766(-)	1025(-)	1159(-)	705(-)	349(-)	23.04
DCSD(T)	-3.041361	3851(0.0)	2091(0.0)	904(0.0)	69(0.0)	3772(-)	1022(-)	1161(-)	704(-)	350(-)	23.07
Z RCCSD(T)	-3.041634	3849(0.0)	2087(0.0)	904(0.0)	66(0.0)	3769(-)	1020(-)	1151(-)	(-)669	347(-)	23.00
(CSD(T)	-3.037669	3854(0.0)	2098(0.0)	906(0.0)	71(0.0)	3775(1042.8)	1029(939.5)	1181(55.1)	711(326.8)	357(432.7)	23.20
C UCCSD(T)	-3.038661	3845(0.0)	2089(0.0)	905(0.0)	65(0.0)	3766(1032.0)	1026(934.1)	1159(69.7)	706(307.7)	349(425.4)	23.05
(CSD(T)	-3.041362	3851(0.0)	2091(0.0)	904(0.0)	69(0.0)	3772(1040.8)	1022(932.0)	1161(66.1)	704(310.1)	350(428.6)	23.07
Z UCCSD(T)	-3.041626	3849(0.0)	2087(0.0)	904(0.0)	67(0.0)	3769(1038.3)	1020(931.7)	1152(72.4)	700(303.3)	347(426.1)	23.01
CSDT	-3.037888	3852(0.0)	2098(0.0)	906(0.0)	71(0.0)	3773(1043.7)	1032(934.3)	1180(54.5)	708(329.3)	357(431.6)	23.19

TABLE 2: Theoretica in km mol ⁻¹), and Zei	al Predictio ro-Point Vil	ns of th bration:	ne Total En al Energy (ergy (in Har ZPVE in kc	tree), Dipole al mol ⁻¹) for	Moment (in 2, the $\tilde{X}^2 A'$	Lebye), H Equilibriu	armonic Vi m Geometr	ibrational H y of the H ₆	requencies + Molecule	s (in cm^{-1}) s in C_s Syr), Infrared nmetry	Intensities	(in parent	heses
theory	energy	μ_e	$\omega_1(a')$	$\omega_2(a')$	$\omega_3(a')$	$\omega_4(a')$	$\omega_5(a')$	$\omega_6(a')$	$\omega_7(a')$	$\omega_8(a')$	ω ₉ (a'')	$\omega_{10}(a^{\prime\prime})$	<i>w</i> ₁₁ (a")	$\omega_{12}(a^{\prime\prime})$	ZPVE
cc-pVTZ ROHF	-2.944440	2.087	4427(88.3)	3457(23.3)	2667(1016.0)	2550(463.4)	590(12.9)	458(302.3)	376(325.0)	139(30.8)	849(0.8)	674(3.6)	425(3.3)	113(4.7)	23.91
aug-cc-pVTZ ROHF	-2.945099	2.137	4422(90.5)	3457(20.9)	2670(957.9)	2568(468.3)	562(21.1)	446(298.6)	359(276.5)	134(31.1)	831(0.9)	652(2.2)	403(3.7)	120(4.6)	23.77
cc-pVQZ ROHF	-2.946052	2.122	4420(89.1)	3459(21.2)	2674(987.9)	2566(462.8)	572(17.5)	451(298.5)	367(292.6)	137(30.7)	838(0.8)	661(2.7)	414(3.3)	116(4.5)	23.84
aug-cc-pVQZ ROHF	-2.946224	2.132	4419(90.4)	3460(20.8)	2673(964.5)	2569(465.4)	566(20.4)	450(302.2)	361(273.7)	134(31.1)	835(0.9)	656(2.2)	404(3.6)	118(4.6)	23.79
cc-pVTZ UHF	-2.944492	2.096	4428(88.1)	3448(21.5)	2668(1043.9)	2545(450.5)	591(12.8)	458(295.7)	372(335.2)	142(30.3)	847(0.8)	674(3.5)	432(3.4)	113(4.7)	23.90
aug-cc-pVTZ UHF	-2.945146	2.143	4423(90.3)	3449(19.5)	2671(984.9)	2563(454.4)	564(20.9)	445(292.7)	355(285.5)	137(30.7)	829(0.9)	652(2.2)	410(3.7)	120(4.5)	23.76
cc-pVQZ UHF	-2.946101	2.129	4421(88.9)	3451(19.7)	2675(1014.5)	2561(450.1)	574(17.3)	450(292.3)	363(302.1)	139(30.3)	835(0.8)	661(2.6)	421(3.3)	116(4.5)	23.83
aug-cc-pVQZ UHF	-2.946271	2.138	4419(90.2)	3451(19.4)	2674(991.2)	2564(452.0)	567(20.2)	449(295.9)	357(283.1)	137(30.6)	833(0.8)	656(2.1)	411(3.7)	118(4.5)	23.78
cc-pVTZ RCCSD	-3.028909	1.704	4221(-)	3262(-)	2468(-)	2201(-)	733(-)	536(-)	414(-)	196(-)	936(-)	747(-)	550(-)	122(-)	23.43
aug-cc-pVTZ RCCSD	-3.030036	1.737	4211(-)	3257(-)	2459(-)	2222(-)	704(-)	525(-)	398(-)	184(-)	912(-)	732(-)	531(-)	125(-)	23.24
cc-pVQZ RCCSD	-3.034679	1.730	4217(-)	3265(-)	2476(-)	2222(-)	713(-)	535(-)	413(-)	189(-)	922(-)	741(-)	538(-)	122(-)	23.38
aug-cc-pVQZ RCCSD	-3.034979	1.736													
cc-pVTZ UCCSD	-3.030947	1.704	4221(73.2)	3261(759.3)	2468(3177.9)	2200(222.1)	733(286.9)	536(89.2)	413(181.8)	196(24.5)	936(9.0)	747(18.0)	550(375.8)	122(16.5)	23.43
aug-cc-pVTZ UCCSD	-3.032087	1.737	4211(73.6)	3257(762.9)	2459(3068.1)	2222(240.3)	704(305.6)	525(80.2)	398(137.6)	184(22.9)	912(8.0)	732(22.6)	531(383.2)	125(14.8)	23.24
cc-pVQZ UCCSD	-3.034680	1.731	4217(72.8)	3264(758.6)	2476(3128.8)	2222(225.1)	713(299.4)	535(83.7)	413(144.4)	189(23.7)	922(8.0)	741(20.4)	539(378.5)	122(15.5)	23.38
aug-cc-pVQZ UCCSD	-3.035006	1.740	4213(73.3)	3264(760.8)	2472(3082.9)	2228(233.3)	707(306.0)	533(82.6)	408(129.0)	184(23.0)	917(7.7)	737(23.1)	529(382.2)	123(14.8)	23.32
cc-pVTZ RCCSD(T)	-3.031493	1.635	4212(-)	3254(-)	2444(-)	2163(-)	749(-)	545(-)	413(-)	200(-)	954(-)	756(-)	557(-)	123(-)	23.40
aug-cc-pVTZ RCCSD(T)	-3.032656	1.666	4201(-)	3249(-)	2433(-)	2184(-)	721(-)	534(-)	397(-)	187(-)	931(-)	742(-)	538(-)	125(-)	23.22
cc-pVQZ RCCSD(T)	-3.035265	1.661	4208(-)	3255(-)	2451(-)	2183(-)	729(-)	545(-)	413(-)	192(-)	940(-)	750(-)	546(-)	123(-)	23.35
aug-cc-pVQZ RCCSD(T)	-3.035600	1.671													
cc-pVTZ UCCSD(T)	-3.031493	1.635	4212(74.7)	3254(781.1)	2444(3199.7)	2163(258.3)	749(285.0)	545(110.8)	413(191.9)	200(25.8)	953(10.0)	756(19.9)	558(369.9)	123(17.1)	23.40
aug-cc-pVTZ UCCSD(T)	-3.032657	1.666	4201(74.9)	3249(785.7)	2433(3082.4)	2184(284.5)	721(304.1)	534(100.3)	397(147.7)	187(24.1)	931(9.1)	742(25.0)	538(377.0)	125(15.2)	23.22
cc-pVQZ UCCSD(T)	-3.035266	1.661	4208(74.2)	3255(780.6)	2451(3152.1)	2183(263.2)	729(298.0)	545(104.3)	413(153.3)	192(25.0)	940(9.0)	750(22.4)	546(372.6)	123(16.1)	23.35
aug-cc-pVQZ UCCSD(T)	-3.035600	1.671	4203(74.6)	3255(783.5)	2447(3102.4)	2189(274.2)	723(304.8)	543(102.5)	408(137.9)	187(24.2)	935(8.6)	746(25.0)	537(376.5)	124(14.9)	23.30
cc-pVTZ UCCSDT	-3.031602	1.625	4210(75.0)	3251(784.6)	2440(3206.7)	2155(263.1)	752(284.8)	547(114.2)	413(193.7)	201(26.0)	956(10.1)	757(19.9)	559(369.1)	123(16.8)	23.39

TABLE 3: Theoretical Predictions of the Total Energy (in Hartree), Harmonic Vibrational Frequencies (in cm⁻¹), Infrared Intensities (in parentheses in km mol⁻¹), and Zero-Point Vibrational Energy (ZPVE in kcal mol⁻¹) for 3, the \tilde{X} ⁴A'₁ Equilibrium Geometry of the H₆⁺ Molecule in D_{3h} Symmetry (IR intensities for the e' modes are doubled)

theory	energy	$\omega_1(a'_1)$	$\omega_2(a'_1)$	$\omega_3(a'_2)$	$\omega_4(e')$	$\omega_5(e')$	$\omega_6(e')$	$\omega_7(a''_2)$	$\omega_8(e'')$	ZPVE
cc-pVTZ ROHF	-2.810532	3371(0.0)	393(0.0)	535(0.0)	2671(1726.9)	388(629.2)	106(13.5)	154(52.5)	575(0.0)	17.06
aug-cc-pVTZ ROHF	-2.811467	3378(0.0)	373(0.0)	488(0.0)	2682(1658.4)	372(565.6)	104(13.9)	138(56.1)	513(0.0)	16.76
cc-pVQZ ROHF	-2.812150	3379(0.0)	381(0.0)	509(0.0)	2681(1696.9)	379(588.1)	106(13.3)	145(53.4)	542(0.0)	16.91
aug-cc-pVQZ ROHF	-2.812420	3381(0.0)	374(0.0)	493(0.0)	2684(1665.8)	373(566.7)	105(13.5)	139(55.7)	519(0.0)	16.80
cc-pVTZ UHF	-2.810605	3366(0.0)	394(0.0)	538(0.0)	2667(1741.5)	380(638.6)	105(10.9)	155(52.0)	578(0.0)	17.03
aug-cc-pVTZ UHF	-2.811534	3373(0.0)	373(0.0)	492(0.0)	2678(1671.9)	364(573.7)	104(11.5)	139(55.7)	516(0.0)	16.73
cc-pVQZ UHF	-2.812220	3375(0.0)	381(0.0)	512(0.0)	2678(1710.8)	370(596.5)	105(10.9)	146(53.0)	545(0.0)	16.88
aug-cc-pVQZ UHF	-2.812488	3376(0.0)	375(0.0)	496(0.0)	2680(1679.4)	365(574.8)	105(11.1)	140(55.2)	523(0.0)	16.77
cc-pVTZ RCCSD	-2.858426	3143(0.0)	487(0.0)	660(0.0)	2442(1999.1)	439(772.6)	126(0.2)	191(31.7)	687(0.0)	16.97
aug-cc-pVTZ RCCSD	-2.859725	3141(0.0)	471(0.0)	608(0.0)	2445(1930.6)	427(709.5)	115(0.0)	172(35.8)	629(0.0)	16.62
cc-pVQZ RCCSD	-2.861304	3149(0.0)	478(0.0)	629(0.0)	2454(1976.6)	434(728.3)	121(0.1)	180(32.8)	656(0.0)	16.82
aug-cc-pVQZ RCCSD	-2.861692	3150(0.0)	474(0.0)	615(0.0)	2456(1941.8)	433(705.5)	115(0.0)	173(35.4)	634(0.0)	16.71
cc-pVTZ UCCSD	-2.858428	3142(0.0)	487(0.0)	660(0.0)	2442(1999.5)	438(772.9)	126(0.2)	191(31.7)	687(0.0)	16.97
aug-cc-pVTZ UCCSD	-2.859727	3141(0.0)	471(0.0)	608(0.0)	2445(1930.9)	426(709.6)	115(0.0)	172(35.8)	629(0.0)	16.62
cc-pVQZ UCCSD	-2.861304	3149(0.0)	478(0.0)	629(0.0)	2454(1976.9)	434(728.5)	120(0.1)	180(32.7)	656(0.0)	16.82
aug-cc-pVQZ UCCSD	-2.861715	3148(0.0)	474(0.0)	613(0.0)	2454(1942.8)	431(707.1)	114(0.0)	171(35.3)	635(0.0)	16.69
cc-pVTZ RCCSD(T)	-2.858778	3128(0.0)	492(0.0)	666(0.0)	2431(2019.7)	441(780.1)	127(0.5)	193(30.7)	693(0.0)	16.96
aug-cc-pVTZ RCCSD(T)	-2.860099	3126(0.0)	476(0.0)	615(0.0)	2433(1951.8)	429(717.3)	115(0.1)	174(34.8)	636(0.0)	16.61
cc-pVQZ RCCSD(T)	-2.861688	3134(0.0)	484(0.0)	635(0.0)	2442(1998.5)	437(736.1)	121(0.2)	181(31.8)	662(0.0)	16.81
aug-cc-pVQZ RCCSD(T)	-2.862106	3133(0.0)	480(0.0)	620(0.0)	2442(1964.1)	434(714.8)	115(0.1)	172(34.3)	641(0.0)	16.68
cc-pVTZ UCCSD(T)	-2.858779	3128(0.0)	492(0.0)	666(0.0)	2431(2019.9)	441(780.2)	127(0.5)	193(30.7)	693(0.0)	16.96
aug-cc-pVTZ UCCSD(T)	-2.860100	3126(0.0)	476(0.0)	615(0.0)	2433(1951.8)	429(717.3)	115(0.2)	174(34.8)	636(0.0)	16.61
cc-pVQZ UCCSD(T)	-2.861689	3134(0.0)	484(0.0)	635(0.0)	2442(1930.6)	437(709.5)	121(0.0)	181(35.8)	662(0.0)	16.81
aug-cc-pVQZ UCCSD(T)	-2.862107	3133(0.0)	480(0.0)	620(0.0)	2442(1964.7)	434(714.8)	114(0.2)	172(34.3)	642(0.0)	16.68

TABLE 4: Theoretical Predictions of the Total Energy (in Hartree), Harmonic Vibrational Frequencies (in cm⁻¹), and Zero-Point Vibrational Energy (ZPVE in kcal mol⁻¹) for 4, the \tilde{X}^2A_g Transition State of the H₆⁺ Molecule in D_{2h} Symmetry

theory	energy	$\omega_1(a_{\sigma})$	$\omega_2(a_{\sigma})$	$\omega_3(a_{\sigma})$	$\omega_4(b_{1g})$	$\omega_5(b_{1g})$	$\omega_6(b_{2\alpha})$	$\omega_7(a_n)$	$\omega_8(b_{1u})$	$\omega_{9}(b_{2u})$	$\omega_{10}(b_{2u})$	$\omega_{11}(b_{3u})$	$\omega_{12}(b_{3u})$	ZPVE
an WTZ DOUE	2 025090	4059	2024	015	1221	704	1072	66:	202	1092	247	2002	502	22.50
	-2.955089	4038	2024	043	1321	700	1072	001	202	1085	242	3993	592	25.59
aug-cc-pv12 KOHF	-2.935377	4054	2014	842	1310	780	1058	001	3/0	1082	343	3990	585	23.50
cc-pvQZ ROHF	-2.936344	4053	2013	840	1315	/81	1054	661	376	1079	344	3988	573	23.47
aug-cc-pVQZ ROHF	-2.936426	4052	2012	840	1309	779	1051	661	374	1078	343	3988	572	23.44
cc-pVTZ UHF	-2.939021	4035	2089	866	1275	705	1074	68i	385	958	342	3945	709	23.42
aug-cc-pVTZ UHF	-2.939286	4031	2079	863	1266	699	1054	68i	375	956	338	3941	703	23.31
cc-pVQZ UHF	-2.940276	4030	2080	861	1267	699	1050	68i	376	953	338	3940	695	23.29
aug-cc-pVQZ UHF	-2.940353	4029	2078	861	1259	697	1045	67i	373	952	337	3939	694	23.25
cc-pVTZ RCCSD	-3.036526	3864	2094	905	1247	618	1076	71i	393	850	339	3783	1008	23.13
aug-cc-pVTZ RCCSD	-3.037485	3855	2085	904	1231	612	1048	67i	383	850	332	3775	1005	22.99
cc-pVQZ RCCSD	-3.040150	3861	2087	903	1235	613	1048	69i	382	849	334	3780	1000	23.01
aug-cc-pVQZ RCCSD	-3.040129	3858	2083	903	1227	621	1039	79i	379	860	317	3779	1004	22.97
cc-pVTZ UCCSD	-3.036592	3863	2095	905	1246	616	1076	71i	393	848	339	3782	1011	23.12
aug-cc-pVTZ UCCSD	-3.037552	3854	2086	904	1230	610	1048	67i	383	848	332	3774	1007	22.98
cc-pVQZ UCCSD	-3.040217	3860	2088	903	1234	611	1048	69i	382	847	334	3779	1003	23.00
aug-cc-pVQZ UCCSD	-3.040470	3858	2084	903	1220	608	1038	78i	379	845	331	3777	1001	22.93
cc-pVTZ RCCSD(T)	-3.037613	3856	2097	906	1242	605	1075	71i	393	835	337	3776	1028	23.09
aug-cc-pVTZ RCCSD(T)	-3.038614	3847	2088	905	1225	600	1046	68i	382	835	330	3767	1024	22.94
cc-pVQZ RCCSD(T)	-3.041310	3853	2090	904	1229	600	1046	69i	382	834	332	3773	1021	22.96
aug-cc-pVOZ RCCSD(T)	-3.041580	3851	2086	904	1217	598	1036	78i	378	832	330	3770	1019	22.90
cc-pVTZ UCCSD(T)	-3.037615	3856	2097	906	1242	606	1075	71i	393	835	337	3776	1028	23.09
aug-cc-pVTZ UCCSD(T)	-3.038615	3847	2088	905	1226	600	1046	68i	382	835	330	3767	1025	22.95
cc-pVOZ UCCSD(T)	-3.041311	3853	2090	904	1230	601	1046	69i	382	835	332	3773	1021	22.97
aug-cc-pVOZ UCCSD(T)	-3.041576	3850	2086	904	1215	597	1037	80i	378	833	330	3770	1019	22.91
cc-pVTZ UCCSDT	-3.037835	3854	2000	906	1241	603	1074	71i	392	832	337	3774	1019	23.07

The analogous MRCI wave function is described in terms of NOs by

$$\Psi = 0.971 \Phi_1[(1a')^2(2a')^2(3a')] - 0.091 \Phi_2[(1a')^2(2a')^{\alpha}(3a')^{\beta}(4a')^{\alpha}] - 0.081 \Phi_3[(2a')^2(3a')(1a'')^2] - 0.067 \Phi_4[(1a')^2(3a')(4a')^2] + 0.058 \Phi_5[(1a')^2(2a')^{\alpha}(3a')^{\alpha}(4a')^{\beta}] - 0.053 \Phi_5[(1a')^2(3a')(5a')^2] + \dots (18)$$

The two dominant excited configurations with CI coefficient greater than 0.08, $\Phi_2 [(2a')^2(3a') \rightarrow (2a')(3a')(4a')]$ and Φ_3

 $[(1a')^2 \rightarrow (1a'')^2]$, contribute similarly to both the CASSCF and MRCI wave functions.

For transition state $\mathbf{6}$ the CASSCF wave function is written in terms of NOs as

$$\Psi = 0.986\Phi_1[(1a_1)^2(2a_1)^2(3a_1)] - 0.095\Phi_2[(2a_1)^2(3a_1)(1b_1)^2] - 0.088\Phi_3[(1a_1)^2(3a_1)(1b_2)^2] - 0.082\Phi_4[(1a_1)^2(3a_1)(4a_1)^2] + \dots (19)$$

The analogous MRCI wave function is described in terms of NOs by

$$\Psi = 0.981 \Phi_1[(1a_1)^2(2a_1)^2(3a_1)] - 0.086 \Phi_2[(2a_1)^2(3a_1)(1b_1)^2] - 0.082 \Phi_3[(1a_1)^2(3a_1)(1b_2)^2] - 0.076 \Phi_4[(1a_1)^2(3a_1)(4a_1)^2] + \dots \quad (20)$$

Transition state **6** has a wave function similar to that for isomer **2**, and the three dominant excited CSFs correspond to the double excitations Φ_2 [(1a₁)² \rightarrow (1b₁)²], Φ_3 [(2a₁)² \rightarrow (1b₂)²], and Φ_4 [(2a₁)² \rightarrow (4a₁)²].

Geometries

Isomer 1 (D_{2d} **Point Group Symmetry**). The optimized geometry at various levels of theory, for the global minimum 1 is depicted in Figure 1. This structure involves two neutral H₂ molecules which symmetrically share one H₂⁺ cationic molecule,

designated as $H_2(H_2^+)H_2$. The H_a-H_a bond distance and $H_2 \cdots H_2^+$ intermolecular distance significantly decrease with more advanced treatments of correlation effects, while the H_b-H_b bond distance increases. This feature may be attributed to the doubly excited configurations (Φ_2) in eqs 9 and 10. There the electrons shift from neutral H_2 to H_2^+ with correlation effects: the occupation numbers of the 1a1 and 1b2 MOs in eq 1 decrease, whereas the occupation numbers of the $2a_1$ and the next three virtual MOs increase, as shown in Table 7. This effect may be alternatively interpreted as the positive charge in the H_2^+ fragment being partially shifted to the two neutral H_2 fragments. The H_a-H_a bond distance of 1 is shorter than the H-H bond distance of H_2^+ , while the H_b - H_b distance of 1 is longer than the H-H bond distance of neutral H₂ (see Figure 7). The H-H bond distances are predicted to be the same at the RCCSD and UCCSD and RCCSD(T) and UCCSD(T) levels of theory.

TABLE 5: Theoretical Predictions of the Total Energy (in Hartree), Dipole Moment (in Debye), Harmonic Vibrational Frequencies (in cm⁻¹), and Zero-Point Vibrational Energy (ZPVE in kcal mol⁻¹) for 5, the \tilde{X}^2A' Transition State of the H₆⁺ Molecule in C_s Symmetry

theory	energy	$\mu_{\rm e}$	$\omega_1(\mathbf{a'})$	$\omega_2(a')$	$\omega_3(a')$	$\omega_4(\mathbf{a}')$	$\omega_5(a')$	$\omega_6(a')$	$\omega_7(a')$	$\omega_8(a')$	$\omega_9(a'')$	$\omega_{10}(a'')$	$\omega_{11}(\mathbf{a}'')$	$\omega_{12}(a'')$	ZPVE
cc-pVTZ ROHF	-2.915977	1.080	4144	2328	2069	1298	816	611	361	2241i	1166	775	437	116	20.19
aug-cc-pVTZ ROHF	-2.916274	1.093	4141	2332	2065	1296	814	606	361	2245i	1159	768	423	125	20.14
cc-pVQZ ROHF	-2.917235	1.122	4142	2347	2064	1302	812	606	360	2242i	1151	766	421	122	20.15
aug-cc-pVQZ ROHF	-2.917320	1.121	4141	2347	2064	1302	812	605	360	2243i	1149	765	417	122	20.14
cc-pVTZ UHF	-2.926486	1.189	4161	2390	2038	1536	771	674	372	1020i	1118	761	521	112	20.66
aug-cc-pVTZ UHF	-2.926780	1.205	4159	2391	2036	1535	767	664	370	1025i	1110	752	502	120	20.60
cc-pVQZ UHF	-2.927770	1.223	4158	2399	2034	1546	767	662	370	1019i	1105	751	501	117	20.60
aug-cc-pVQZ UHF	-2.927856	1.222	4157	2399	2034	1547	766	661	369	1019i	1103	749	495	117	20.58
cc-pVTZ RCCSD	-3.024632	1.023	4020	2373	2142	1357	848	823	379	917i	1103	795	653	117	20.89
aug-cc-pVTZ RCCSD	-3.025599	1.016	4010	2365	2134	1358	842	807	373	918i	1093	780	629	120	20.75
cc-pVQZ RCCSD	-3.028233	1.035													
aug-cc-pVQZ RCCSD	-3.028533	1.032													
cc-pVTZ UCCSD	-3.024753	1.040	4023	2382	2141	1356	849	823	378	912i	1100	796	654	117	20.90
aug-cc-pVTZ UCCSD	-3.025723	1.033	4013	2374	2132	1357	842	808	372	912i	1090	781	631	120	20.76
cc-pVQZ UCCSD	-3.028360	1.052	4020	2388	2135	1367	845	810	375	905i	1091	783	633	121	20.83
aug-cc-pVQZ UCCSD	-3.028635	1.047	4017	2385	2133	1367	844	807	373	904i	1088	778	626	122	20.79
cc-pVTZ RCCSD(T)	-3.025974	1.021	4019	2383	2155	1323	860	830	380	897i	1100	801	663	116	20.92
aug-cc-pVTZ RCCSD(T)	-3.027010	1.013	4009	2375	2145	1323	852	816	373	898i	1090	785	641	120	20.77
cc-pVQZ RCCSD(T)	-3.029657	1.032													
aug-cc-pVQZ RCCSD(T)	-3.029970	1.028													
cc-pVTZ UCCSD(T)	-3.025968	1.018	4019	2381	2155	1324	860	830	380	894i	1101	801	663	116	20.92
aug-cc-pVTZ UCCSD(T)	-3.026979	1.009	4009	2371	2146	1325	851	817	374	894i	1091	785	641	119	20.77
cc-pVQZ UCCSD(T)	-3.029650	1.029	4015	2386	2150	1333	854	820	376	887i	1093	787	643	120	20.84
aug-cc-pVQZ UCCSD(T)	-3.029938	1.023	4012	2382	2148	1333	853	817	375	885i	1089	783	637	121	20.80

TABLE 6: Theoretical Predictions of the Total Energy (in Hartree), Dipole Moment (in Debye), Harmonic Vibrational Frequencies (in cm⁻¹), and Zero-Point Vibrational Energy (ZPVE in kcal mol⁻¹) for 6, the \tilde{X} ²A₁ Transition State of the H₆⁺ Molecule in $C_{2\nu}$ Symmetry

theory	energy	$\mu_{\rm e}$	$\omega_1(a_1)$	$\omega_2(a_1)$	$\omega_3(a_1)$	$\omega_4(a_1)$	$\omega_5(a_1)$	$\omega_6(a_2)$	$\omega_7(b_1)$	$\omega_8(b_1)$	$\omega_9(b_1)$	$\omega_{10}(b_2)$	$\omega_{11}(b_2)$	$\omega_{12}(b_2)$	ZPVE
cc-pVTZ ROHF	-2.942826	0.383	4408	3598	2564	471	249	161	905	712	92	2593	521	145i	23.26
aug-cc-pVTZ ROHF	-2.943665	0.492	4406	3584	2585	457	257	169	875	678	71	2613	502	120i	23.15
cc-pVQZ ROHF	-2.944542	0.479	4404	3590	2586	464	266	164	884	690	80	2610	506	127i	23.22
aug-cc-pVQZ ROHF	-2.944783	0.493	4403	3586	2589	462	257	167	878	681	68	2616	505	119i	23.18
cc-pVTZ UHF	-2.942834	0.392	4408	3598	2564	471	249	161	904	712	93	2592	520	146i	23.26
aug-cc-pVTZ UHF	-2.943673	0.499	4406	3584	2586	457	257	169	875	678	72	2612	502	121i	23.15
cc-pVQZ UHF	-2.944550	0.486	4404	3590	2587	464	266	164	884	690	81	2609	506	128i	23.22
aug-cc-pVQZ UHF	-2.944791	0.500	4403	3586	2589	462	257	167	878	681	69	2615	504	120i	23.17
cc-pVTZ RCCSD	-3.028232	0.178	4179	3596	2166	534	281	185	1052	810	109	2269	679	176i	22.67
aug-cc-pVTZ RCCSD	-3.029575	0.069	4174	3571	2191	522	291	185	1016	783	87	2292	655	156i	22.54
cc-pVQZ RCCSD	-3.032069	0.049	4181	3581	2210	537	300	185	1023	791	93	2304	654	162i	22.67
aug-cc-pVQZ RCCSD	-3.032464	0.028	4179	3575	2213	534	294	186	1015	785	82	2309	650	157i	22.62
cc-pVTZ UCCSD	-3.028232	0.178	4179	3596	2166	534	281	185	1052	810	109	2269	679	176i	22.67
aug-cc-pVTZ UCCSD	-3.029578	0.069	4174	3571	2191	522	291	185	1016	785	86	2292	655	156i	22.54
cc-pVQZ UCCSD	-3.032071	0.049	4181	3581	2210	537	299	185	1023	791	93	2304	654	162i	22.67
aug-cc-pVQZ UCCSD	-3.032467	0.027	4179	3575	2214	534	294	186	1015	785	83	2309	649	157i	22.62
cc-pVTZ RCCSD(T)	-3.028745	0.290	4167	3610	2104	541	278	187	1077	823	108	2230	701	176i	22.62
aug-cc-pVTZ RCCSD(T)	-3.030108	0.180	4161	3584	2129	529	289	188	1042	799	86	2253	678	157i	22.50
cc-pVQZ RCCSD(T)	-3.032613	0.154	4169	3593	2151	544	297	188	1047	804	93	2266	676	163i	22.63
aug-cc-pVQZ RCCSD(T)	-3.033016	0.132	4166	3587	2154	542	293	189	1039	798	83	2271	672	158i	22.58
cc-pVTZ UCCSD(T)	-3.028745	0.290	4167	3610	2104	541	278	187	1077	823	108	2230	701	176i	22.62
aug-cc-pVTZ UCCSD(T)	-3.030109	0.180	4161	3584	2129	529	289	188	1042	799	86	2253	678	157i	22.50
cc-pVQZ UCCSD(T)	-3.032613	0.154	4169	3593	2151	544	297	187	1047	804	93	2266	677	163i	22.63
aug-cc-pVQZ UCCSD(T)	-3.033016	0.132	4166	3587	2154	542	293	188	1039	798	83	2271	672	158i	22.58

 TABLE 7: Natural Orbital and Sum of Virtual Molecular Orbitals (VMOs) Electron Occupation Numbers for the Valence

 MOs of CASSCF Wavefunctions at the aug-cc-pVTZ UCCSD(T) Optimized Geometries

МО	structure 1	structure 2	structure 3	structure 4	structure 5	structure 6
1	$1.985(1a_1)$	1.977(1a')	1.968(1a' ₁)	1.985(1ag)	1.976(1a')	$1.977(1a_1)$
2	$1.969(1b_2)$	1.967(2a')	2.002(1e')	$1.969(1b_{2u})$	1.961(2a')	$1.967(2a_1)$
3	$1.002(2a_1)$	1.000(3a')		$1.002(2a_g)$	0.999(3a')	$1.000(3a_1)$
4	0.020(1e)	0.023(1a")	$1.000(2a'_1)$	$0.020(1b_{3u})$	0.029(4a')	$0.023(4a_1)$
5	$0.018(3a_1)$	0.016(4a')	0.032(2e')	0.018(3ag)	0.022(1a")	$0.017(1b_1)$
6	$0.007(4a_1)$	0.016(5a')		$0.007(2b_{2u})$	0.013(5a')	$0.016(1b_2)$
VMOs	0.045	0.055	0.031	0.045	0.064	0.055

Isomer 2 (C_s **Point Group Symmetry**). The optimized geometry of structure **2** is presented in Figure 2. This isomer consists of three fragments, H, H₃⁺, and H₂, connected as $H(H_3^+)H_2$. The H_a-H_c , H_a-H_d , H_c-H_d , and H_b-H_b bond distances increase with inclusion of correlation effects, while the H_d····H_e distance and the H₂····H₃⁺ intermolecular distance drastically decrease. This phenomenon may be attributed to the double excitations in eqs 11 and 12 which move the electrons from neutral H₂ to H₃⁺: the occupation numbers of the 1a' and 2a' MOs decrease, while those of the virtual MOs increase, as presented in Table 7.

ROHF cc-pVT2	Z	0.8489	0.8801		
ROHF aug-cc-	pVTZ	0.8492	0.8800		
ROHF cc-pVQ	Z	0.8488	0.8792		
ROHF aug-cc-	pVQZ	0.8487	0.8794		
UHF cc-pVTZ		0.8499	0.8792		
UHF aug-cc-p\	/TZ	0.8502	0.8792		
UHF cc-pVQZ		0.8498	0.8783		
UHF aug-cc-p\	/QZ	0.8497	0.8786		
RCCSD cc-pV	TZ	0.8598	0.8930		
RCCSD aug-co	c-pVTZ	0.8602	0.8941		
RCCSD cc-pV	QZ	0.8597	0.8918		
RCCSD aug-co	c-pvQZ	0.8590	0.8928		
UCCSD cc-pv	12	0.8603	0.8930		
UCCSD aug-tu	07	0.8597	0.0940		
UCCSD aug-co	-nVOZ	0.8597	0.8924		
BCCSD(T) cc-	nVTZ	0.8589	0.8962		
RCCSD(T) aut	-cc-pVTZ	0.8592	0.8974		
RCCSD(T) cc-	nVQZ	0.8588	0.8950		
RCCSD(T) aud	-cc-pVQZ	0.8588	0.8957		
UCCSD(T) cc-	DVTZ	0.8589	0.8962		
UCCSD(T) aud	-cc-pVTZ	0.8592	0.8974		
UCCSD(T) cc-	pVQZ	0.8588	0.8950		
UCCSD(T) aug	g-cc-pVQZ	0.8588	0.8956		
UCCSDT cc-p	VTZ	0.8589	0.8967		
UCCSDT aug-	cc-pVTZ	0.8592	0.8980		
		Cc	2		
			a	•••	(h
					(D
(e)					(h)
C					D
OHF cc-pVTZ	1.8648	0.908	8	1.6411	0.7457
OHF aug-cc-pVTZ	1.8866	0.907	1	1.6503	0.7460
ROHF cc-pVQZ	1.8769	0.907	1	1.6487	0.7452
OHF aug-cc-pVQZ	1.8838	0.906	8	1.6492	0.7453
JHF cc-pVTZ	1.8458	0.909	4	1.6442	0.7457
IHF aug-cc-pVTZ	1.8684	0.907	7	1.6532	0.7459
IHF cc-pVQZ	1.8584	0.907	7	1.6516	0.7452
IHF aug-cc-pVQZ	1.8655	0.907	4	1.6521	0.7453
CCSD cc-pVTZ	1.6269	0.949	1	1.5063	0.7573
CCSD aug-cc-pVTZ	1.6409	0.947	2	1.5104	0.7579
CCSD cc-pVQZ	1.6309	0.946	5	1.5105	0.7567
CCSD aug-cc-pVQZ	1.6417	0.945	4	1.5096	0.7569
ICCSD cc-pv12	1.6264	0.949	1	1.5005	0.7573
ICCSD aug-cc-pv12	1.6404	0.947	3	1,5105	0.7579
ICCSD cc-pvQZ	1.6304	0.946	5	1,5100	0.7567
CCSD aug-cc-pvQz	1.0351	0.940	0	1 4874	0.7509
CCSD(T) aug-co-pVT2	1,0191	0.954	2	1 4903	0.7501
CCSD(T) aug-00-pv 12	1 6221	0.952	5	1,4909	0.7575
CCSD(T) aug-cc-pVOz	1 6268	0.951	0	1,4907	0.7577
ICCSD(T) cc-nVTZ	1,6190	0.954	0	1.4874	0.7581
ICCSD(T) aug-cc-pVT2	1.6330	0.952	2	1.4903	0.7587
ICCSD(T) cc-pVQZ	1.6220	0.951	5	1.4910	0.7575
ICCSD(T) aug-cc-pVQ7	1.6267	0.951	0	1.4908	0.7577
ICCSDT cc-pVTZ	1.6168	0.955	0	1.4846	0.7582
		5.000	1	4 4070	

Figure 2. Predicted geometries for **2**, the \bar{X} ²A' equilibrium geometry of the H₆⁺ molecule in C_s symmetry (isomer **2**). Bond lengths are in angstroms.

Consider the central triangle in structure **2**. The H_c-H_d bond distance of **2** is shorter than for isolated H_3^+ (in Figure 7), while the H_a-H_c and H_a-H_d bond distances are longer. The H_b-H_b bond distance of **2** is longer than that for H_2 ; however, it is shorter than the H_b-H_b bond distance of H_5^+ (C_{2v} , in Figure 7) and the H_b-H_b bond distance of **1**. The intermolecular distance $H_3^+\cdots H_2$ (1.491 Å at the aug-cc-pVQZ RCCSD(T) level of theory) of **2** is much longer than the intermolecular distance $H_3^+\cdots H_2$ (1.294 Å) of the H_5^+ (C_{2v}) cluster or the $H_2^+\cdots H_2$ distance (1.159 Å at the same level) of isomer **1**. Consequently, isomer **2** appears to have the weakest intermolecular interaction among the three clusters.

Isomer 3 (D_{3h} **Point Group Symmetry**). The optimized geometry of quartet state 3 is shown in Figure 3. This structure qualitatively incorporates three neutral H atoms and one H_3^+ cation. The H-H bond distance of the H_3^+ cationic core is slightly longer (0.027 Å) than the H-H bond distance of the H_3^+ cationic molecule. This H–H bond distance of the H_3^+ cationic core increase, and the $H_a \cdots H_b$ distance of isomer 3 becomes significantly shorter with more complete treatment of correlation. This feature may be due to the fact that some electron density shifts from the H_3^+ cationic core to the 2e' MOs in eqs 13 and 14: the occupation numbers of the $1a'_1$ MO in eq 3 decrease, whereas the 2e' occupation number increases, as shown in Table 7. In this light, it should be mentioned that the $H_a \cdots H_b$ distance (1.714 Å at the aug-cc-pVQZ RCCSD(T) level) of isomer **3** is longer than the $H_d \cdots H_e$ distance (1.627 Å at the same level) of isomer 2.

Transition State 4 (D_{2h} **Point Group Symmetry**). The optimized geometry of **4** is shown in Figure 4. Structure **4** represents an isomerization transition state between the two equivalent structures of isomer **1** via an internal rotation about the $H_2 \cdots H_2^+ \cdots H_2$ axis. The three structural parameters and their variation with basis sets and correlation effects are very similar (to within 0.001 Å) to those of isomer **1**. The total electron occupation number in the virtual orbitals (0.045) for the structure **4** is indeed practically the same as that for isomer **1** (see Table 7).

Transition State 5 (*C*_s **Point Group Symmetry).** The optimized geometry of structure **5** is illustrated in Figure 5. This structure represents a transition state between the two equilibrium structures, **1** (in D_{2d} symmetry) and **2** (in C_s symmetry). With more complete treatment of correlation, the H_a-H_c, H_c-H_d, and H_a···H_d bond distances decrease, while the H_d-H_e and H_b-H_b bond distances and H₄⁺···H₂ intermolecular distance increase. This phenomenon may due to the spin flipped singly excited configuration Φ_2 [(2a') \rightarrow (4a')] and doubly excited configuration Φ_3 [(1a')² \rightarrow (1a'')²] in eqs 17 and 18.

The H_b-H_b bond distance (0.773 Å at the aug-cc-pVQZ RCCSD(T) level of theory) is longer than the H–H bond distance (0.742 Å at the aug-cc-pVQZ RCCSD level of theory) for isolated H_2 . This H_b-H_b bond length for **5** lies between the distances H_b-H_b (0.791 Å) of **1** and H_b-H_b (0.758 Å) of **2**, as

Figure 3. Predicted geometries for **3**, the \tilde{X} ⁴A'₁ equilibrium geometry of the H₆⁺ molecule in D_{3h} symmetry (isomer **3**). Bond lengths are in angstroms.

b b		a)	
ROHF cc-pVTZ	1.0726	1,1813	0.7755
ROHF aug-cc-pVTZ	1.0742	1,1814	0.7757
ROHF cc-pVQZ	1.0732	1,1821	0.7752
ROHF aug-cc-pVQZ	1.0735	1,1820	0.7752
UHF cc-pVTZ	1.0451	1.1844	0.7779
UHF aug-cc-pVTZ	1.0463	1,1846	0.7780
UHF cc-pVQZ	1.0451	1.1853	0.7775
UHF aug-cc-pVQZ	1.0454	1.1852	0.7776
RCCSD cc-pVTZ	1.0391	1.1599	0.7901
RCCSD aug-cc-pVTZ	1.0408	1.1597	0.7906
RCCSD cc-pVQZ	1.0390	1.1593	0.7897
RCCSD aug-cc-pVQZ	1.0395	1.1586	0.7900
UCCSD cc-pVTZ	1.0387	1.1601	0.7902
UCCSD aug-cc-pVTZ	1.0404	1.1599	0.7907
UCCSD cc-pVQZ	1.0386	1.1594	0.7898
UCCSD aug-cc-pVQZ	1.0391	1.1592	0.7901
RCCSD(T) cc-pVTZ	1.0383	1.1596	0.7907
RCCSD(T) aug-cc-pVTZ	1.0401	1.1593	0.7913
RCCSD(T) cc-pVQZ	1.0383	1.1589	0.7904
RCCSD(T) aug-cc-pVQZ	1.0388	1.1586	0.7906
UCCSD(T) cc-pVTZ	1.0384	1.1596	0.7907
UCCSD(T) aug-cc-pVTZ	1.0402	1.1593	0.7913
UCCSD(T) cc-pVQZ	1.0383	1.1589	0.7904
UCCSD(T) aug-cc-pVQZ	1.0390	1.1589	0.7905
UCCSDT cc-pVTZ	1.0383	1.1597	0.7909
UCCSDT aug-cc-pVTZ	1.0401	1.1594	0.7914

Figure 4. Predicted geometries for **4**, the $\tilde{X}^2 A_g$ transition state of the H_6^+ molecule in D_{2h} symmetry (transition state **4**). Bond lengths are in angstroms.

expected. Similarly, the $H_2 \cdots H_a$ separation (1.262 Å) falls between $H_2 \cdots H_a$ (1.159 Å) for 1 and $H_2 \cdots H_a$ (1.491 Å) for 2.

ROHF aug-cc-p	0.0	795	0.9455		
	OVTZ 0.9	802	0.9452		
ROHF cc-pVQ2	2 0.9	809	0.9435		
ROHF aug-cc-p	VQZ 0.9	808	0.9436		
UHF cc-pVTZ	0.9	658	0.9329		
UHF aug-cc-pV	TZ 0.9	666	0.9327		
UHF cc-pVQZ	0.9	671	0.9317		
UHF aug-cc-pV	QZ 0.9	671	0.9318		
RCCSD cc-pV1	Z 0.9	484	0.9260		
RCCSD aug-co	-pVTZ 0.9	497	0.9271		
RCCSD cc-pVC	QZ 0.9	492	0.9252		
RCCSD aug-co	-pVQZ 0.9	495	0.9255		
UCCSD cc-pV1	Z 0.9	485	0.9250		
UCCSD aug-cc	-pVTZ 0.9	499	0.9261		
UCCSD cc-pV0	QZ 0.9	494	0.9242		
UCCSD aug-co	-pVQZ 0.9	496	0.9247		
RCCSD(T) cc-p	0.9 OVTZ	460	0.9250		
RCCSD(T) aug	-cc-pVTZ 0.9	474	0.9262		
RCCSD(1) cc-p	0.9 OVQZ	468	0.9243		
RCCSD(T) aug	-cc-pVQZ 0.9	472	0.9246		
UCCSD(T) cc-p	0.9	459	0.9253		
UCCSD(T) aug	-cc-pVIZ 0.9	473	0.9266		
UCCSD(T) cc-p	0.9	468	0.9245		
UCCSD(1) aug	-cc-pVQZ 0.9	4/1	0.9251		
UCCSDT cc-pv	12 0.9	456	0.9250		
UCCSD1 aug-0	c-pv12 0.9	470	0.9264		
		-			
		(c)			
					\bigwedge
					1.
	1.		- a 1		b
					H=
			-		
e					-
Ct-					
				(h
				6	The
					L'
	0.0004	+ 5000		0500	0 7664
DOLE on DVTZ		1.5238		2526	11.7 12124
ROHF cc-pVTZ	0.0504	1 6006		2562	0 7664
ROHF cc-pVTZ ROHF aug-cc-pVTZ ROHF cc-pVOZ	0.8909	1.5235	1	.2562	0.7664
ROHF cc-pVTZ ROHF aug-cc-pVTZ ROHF cc-pVQZ ROHF aug-cc-pVQZ	0.8909 0.8898 0.8898	1.5235 1.5218 1.5218	1	.2562 .2608	0.7664 0.7656 0.7658
ROHF cc-pVTZ ROHF aug-cc-pVTZ ROHF cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVTZ	0.8909 0.8898 0.8898 0.8898	1.5235 1.5218 1.5218 1.5218	-	.2562 .2608 .2609	0.7664 0.7656 0.7658 0.7645
ROHF cc-pVTZ ROHF aug-cc-pVTZ ROHF cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVTZ UHF aug-cc-pVTZ	0.8909 0.8898 0.8898 0.9245 0.9247	1.5235 1.5218 1.5218 1.5103 1.5102		.2562 .2608 .2609 .2738 .2775	0.7664 0.7656 0.7658 0.7645 0.7645
ROHF cc-pVTZ ROHF cc-pVQZ ROHF cc-pVQZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVQZ	0.8909 0.8898 0.8898 0.9245 0.9247 0.9227	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108		.2562 .2608 .2609 .2738 .2775 .2803	0.7664 0.7656 0.7658 0.7645 0.7645 0.7646 0.7640
ROHF cc-pVTZ ROHF aug-cc-pVTZ ROHF cc-pVQZ UHF cc-pVTZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ UHF cc-pVQZ UHF aug-cc-pVQZ	0.8304 0.8909 0.8898 0.8898 0.9245 0.9247 0.9227	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5108		2562 2608 2609 2738 2775 2803 2804	0.7664 0.7656 0.7658 0.7645 0.7645 0.7646 0.7640 0.7640
ROHF cc-pVTZ ROHF cc-pVTZ ROHF cc-pVQZ ROHF cc-pVQZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD cc-pVTZ	0.8304 0.8309 0.8898 0.9245 0.9247 0.9227 0.9227 0.9227	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714		2562 2608 2609 2738 2775 2803 2804 2580	0.7664 0.7656 0.7658 0.7645 0.7645 0.7640 0.7640 0.7640 0.7640
ROHF cc-pVTZ ROHF cc-pVQZ ROHF cc-pVQZ UHF cc-pVQZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVQZ UHF cug-cc-pVTZ RCCSD cc-pVTZ RCCSD cc-pVTZ	0.8304 0.8309 0.8898 0.9245 0.9247 0.9227 0.9227 0.9227 0.9766 0.9764	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3719		2562 2608 2609 2738 2775 2803 2804 2580 2586	0.7664 0.7656 0.7658 0.7645 0.7645 0.7646 0.7640 0.7640 0.7732 0.7738
ROHF ac;pvTZ ROHF ac;pcc-pvTZ ROHF ac;pvQZ ROHF ac;pcc-pvQZ UHF cc-pvTZ UHF cc-pvQZ RCSD cc-pvQZ UHF cc-pvTZ UHF cc-pvQZ RCCSD cc-pvTZ RCCSD ac;pvTZ RCCSD cc-pvTZ RCCSD cc-pvTZ	0.8909 0.8898 0.8898 0.9245 0.9245 0.9227 0.9227 0.9227 0.9227 0.9766 0.9764 0.9764	1.5235 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3719 1.3709		2562 2608 2609 2738 2775 2803 2804 2580 2586 2605	0.7664 0.7656 0.7658 0.7645 0.7646 0.7640 0.7640 0.7732 0.7738 0.7738
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pV7Z UHF aug-cc-pVTZ UHF aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z	0.8909 0.8898 0.8898 0.9247 0.9227 0.9227 0.9766 0.9764 0.9743 0.9745	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3714 1.3704 1.3704		2562 2609 2738 2775 2803 2804 2580 2586 2605 2605	0.7664 0.7656 0.7658 0.7645 0.7646 0.7640 0.7640 0.7640 0.7732 0.7738 0.7727 0.7728
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF aug-cc-pVQZ UHF aug-cc-pVQZ UHF aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQ2 RCCSD aug-cc-pVQ2	0.8909 0.8898 0.9245 0.9247 0.9227 0.9227 0.9766 0.9764 0.9743 0.9745 0.9745	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3704 1.3704 1.3703 1.3673		2562 2608 2609 2738 2775 2803 2804 2580 2586 2605 2605	0.7664 0.7656 0.7658 0.7645 0.7645 0.7640 0.7640 0.7640 0.7732 0.7738 0.7727 0.7728 0.7729
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD cc-pVTZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ UCCSD aug-cc-pVQZ UCCSD aug-cc-pV7Z UCCSD aug-cc-pV7Z UCCSD aug-cc-pV7Z	0.8909 0.8898 0.8898 0.9245 0.9247 0.9227 0.9227 0.9764 0.9764 0.9743 0.9745 0.9784 0.9782	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3719 1.3704 1.3705 1.3673 1.3679		2562 2608 2609 2738 2775 2803 2804 2586 2605 2605 2605 2610 2616	0.7664 0.7656 0.7658 0.7645 0.7646 0.7640 0.7640 0.7732 0.7738 0.7727 0.7728 0.7729 0.7734
ROHF co-pVTZ ROHF aug-co-pVQZ ROHF aug-co-pVQZ UHF co-pVQZ UHF co-pVTZ UHF co-pVTZ UHF co-pVQZ UHF co-pVQZ RCSD co-pVTZ RCSD co-pVQZ RCSD co-pVQZ RCSD aug-co-pVQZ UCSD co-pVTZ UCSD co-pVTZ UCSD co-pVTZ UCSD co-pVQZ	0.8909 0.8898 0.9245 0.9247 0.9227 0.9227 0.9766 0.9743 0.9743 0.9745 0.9782 0.9782	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3705 1.3673 1.3673 1.3663		2562 2608 2609 2738 2775 2803 2804 2580 2586 2605 2605 2605 2610 2616 2636	0.7664 0.7656 0.7658 0.7645 0.7640 0.7640 0.7640 0.7732 0.7732 0.7728 0.7729 0.7724
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ RCSD aug-cc-pVTZ RCSD aug-cc-pVTZ RCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVTZ UCSD aug-cc-pVCZ UCSD aug-cc-pVCZ	0.3904 0.8909 0.8898 0.9245 0.9247 0.9227 0.9262 0.9766 0.9764 0.9743 0.9745 0.9745 0.9782 0.9762 0.9762	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5100 1.3714 1.3714 1.3704 1.3705 1.3673 1.3679 1.3668		2562 2608 27738 2775 2803 2804 2580 2586 2605 2605 2605 2610 2616 2633	0.7664 0.7656 0.7658 0.7645 0.7646 0.7640 0.7732 0.7738 0.7727 0.7728 0.7729 0.7729 0.7724 0.7724 0.7724
ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD cc-pVZ RCCSD cc-pVZ RCCSD cc-pVQZ RCCSD cc-pVQZ RCCSD cc-pV7Z UCCSD cc-pV7Z UCCSD cc-pV7Z UCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ	0.3304 0.8909 0.8898 0.9245 0.9247 0.9227 0.9227 0.9766 0.9764 0.9764 0.9743 0.9743 0.9775 0.97762 0.9762 0.9762 0.9762 0.9762	1.5235 1.5218 1.5218 1.5103 1.5102 1.5108 1.5110 1.3714 1.3719 1.3705 1.3673 1.3673 1.3663 1.3663 1.36683 1.36683 1.3654		2562 2608 2738 2775 2803 2804 2580 2580 2605 2605 2605 2605 2616 2633 2633 2600	0.7664 0.76556 0.76558 0.7645 0.7646 0.7640 0.7732 0.7732 0.7728 0.7729 0.7729 0.7724 0.7724 0.7726 0.7732
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ UHF cc-pVZ UHF cc-pVZ UHF aug-cc-pVTZ UHF aug-cc-pVZ RCCSD cc-pVTZ RCCSD aug-cc-pVTZ RCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ RCCSD CCSPTZ UCCSD CSD(T) cc-pVTZ RCCSD(T) cc-pVTZ RCCSD(T) cc-pVTZ RCCSD(T) cc-pVTZ RCCSD(T) cc-pVTZ RCCSD(T) cc-pVTZ RCCSD(T) cc-pVTZ	0.330-9 0.8909 0.8998 0.9245 0.9245 0.9227 0.9227 0.9227 0.9227 0.9227 0.9766 0.9764 0.9764 0.9745 0.9745 0.9762 0.9762 0.9761 0.9872	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5100 1.3714 1.3719 1.3704 1.3704 1.3705 1.3673 1.3673 1.3668 1.3554 1.3553		2562 2608 2609 2738 2775 2803 2803 2804 2580 2605 2605 2605 2605 2660 2665 2663 2663 2663 2663 2663 2663	0.7664 0.7656 0.7658 0.7645 0.7646 0.7640 0.7732 0.7738 0.7727 0.7728 0.7728 0.7729 0.7734 0.7724 0.7726 0.7732 0.7732
ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ RCCSD (cc-pVQZ RCCSD() cc-pV7Z RCCSD() cc-pV7Z RCCSD() cc-pV7Z RCCSD() cc-pV7Z RCCSD() cc-pV7Z	0.3904 0.8909 0.8898 0.3245 0.9247 0.9227 0.9227 0.9227 0.9766 0.9766 0.9764 0.9743 0.9745 0.9745 0.9745 0.9745 0.9782 0.9761 0.9772 0.9872 0.9872	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5100 1.3714 1.3704 1.3705 1.3673 1.3673 1.3663 1.3663 1.3664 1.3554 1.3554		2562 2608 2609 2738 2775 2803 2804 2580 2685 2605 2605 2616 2616 2616 2633 2600 2603	0.7664 0.76556 0.76558 0.7645 0.7646 0.7640 0.7732 0.7732 0.7728 0.7728 0.7729 0.7734 0.7724 0.7724 0.7726 0.7732 0.7738 0.7727
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVGZ ROHF aug-cc-pVGZ UHF aug-cc-pVGZ UHF aug-cc-pVGZ RCCSD cc-pVGZ RCCSD aug-cc-pVTZ RCCSD aug-cc-pVGZ RCCSD aug-cc-pVGZ UCCSD aug-cc-pVGZ UCCSD aug-cc-pVGZ UCCSD aug-cc-pVGZ RCCSD(T) cc-pVGZ RCCSD(T) cc-pVGZ	0.3904 0.8909 0.8998 0.2245 0.9227 0.9227 0.9227 0.9766 0.9764 0.9764 0.9764 0.9745 0.9745 0.9784 0.9784 0.9762 0.9762 0.9761 0.9761 0.9872 0.9852 0.9852	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5100 1.3714 1.3714 1.3704 1.3704 1.3673 1.3673 1.3663 1.3668 1.3553 1.3553 1.3537		2562 2608 2609 2738 2775 2803 2804 2580 2580 2580 2605 2605 2610 2616 2633 2605 2633 2600 2633 2600 2625 2623	0.7664 0.7656 0.7658 0.7645 0.7645 0.7640 0.7732 0.7727 0.7728 0.7728 0.7729 0.7734 0.7726 0.7734 0.7726 0.7738 0.7727 0.7738 0.7727 0.7738 0.7727 0.7738
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ UHF aug-cc-pVTZ RCCSD aug-cc-pVTZ RCCSD aug-cc-pVTZ RCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ RCCSD cc-pVQZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVZ	0.390-9 0.8909 0.8909 0.8998 0.9245 0.9245 0.9227 0.9227 0.9227 0.9766 0.9764 0.9764 0.9743 0.9745 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9761 0.9872 0.9872 0.9852 0.9854 0.9854 0.9854	1.5235 1.5218 1.5218 1.5103 1.5102 1.5100 1.3714 1.3705 1.3705 1.3673 1.3663 1.3654 1.3554 1.3553 1.3538 1.3538		2562 2608 2609 2738 2775 2803 2804 2580 2586 2605 2605 2610 2616 2636 2610 2633 2600 2605 2600 2605 2623 2623 2623 2624 2594	0.7664 0.7658 0.7658 0.7645 0.7645 0.7646 0.7732 0.7732 0.7738 0.7727 0.7728 0.7729 0.7724 0.7726 0.7726 0.7732 0.7732 0.7732 0.7732
ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD cc-pVTZ RCCSD aug-cc-pVQZ RCCSD aug-cc-pVTZ UCCSD aug-cc-pVTZ UCCSD aug-cc-pVQZ RCCSD aug-cc-pVQZ RCCSD (1 cc-pVTZ RCCSD(1) aug-cc-pVQZ RCCSD(1) aug-cc-pVQZ RCCSD(1) aug-cc-pVQZ RCCSD(1) aug-cc-pVQZ RCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ	0.390-9 0.890-9 0.8998 0.9245 0.9247 0.9227 0.9766 0.9764 0.9743 0.9743 0.9744 0.9745 0.9774 0.97784 0.97784 0.9782 0.9761 0.9761 0.9761 0.9761 0.9872 0.9872 0.9852 0.98554 0.9869 0.9866	1.5235 1.5218 1.5218 1.5103 1.5102 1.5102 1.5100 1.3714 1.3704 1.3704 1.3705 1.3673 1.3673 1.3663 1.3663 1.3553 1.3553 1.3553 1.3553 1.3553 1.3553		2562 2608 2609 2778 2775 2803 2580 2580 2586 2605 2605 2605 2605 2616 2633 2665 2663 2663 2663 2665 2665 266	0.7664 0.7658 0.7658 0.7645 0.7646 0.7640 0.7740 0.7732 0.7738 0.7727 0.7728 0.7724 0.7724 0.7724 0.7724 0.7732 0.7738
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD cc-pVQZ RCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ RCCSD(T) cc-pVQZ RCCSD(T) cc-pVQZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVTZ RCCSD(T) aug-cc-pVQZ RCCSD(T) aug-cc-pVQZ	0.330-6 0.8909 0.8998 0.9245 0.9247 0.9227 0.9227 0.9227 0.9227 0.9764 0.9764 0.9743 0.9743 0.9784 0.9784 0.9782 0.9762 0.9762 0.9762 0.9762 0.9761 0.9872 0.9852 0.9854 0.9869 0.9866 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9864 0.9866 0.9864 0.9864 0.9866 0.9866 0.9866 0.9864 0.9866 0.9865 0.9865 0.9866 0.9866 0.9865 0.986	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5102 1.3714 1.3714 1.3704 1.3704 1.3704 1.3673 1.3673 1.3668 1.3553 1.3588 1.3538 1.3538 1.3553 1.3562 1.3562 1.3564		2562 2608 2609 2738 2775 2803 2804 2550 2550 2605 2605 2605 2605 2616 2633 2605 2616 2633 2605 2616 2633 2605 2605 2605 2605 2605 2605 2605 2605	0.7664 0.7658 0.7658 0.7645 0.7645 0.7640 0.7740 0.7732 0.7738 0.7727 0.7728 0.7734 0.7724 0.7734 0.7724 0.7734 0.7726 0.7732 0.7732 0.7732 0.7732 0.7732 0.7733 0.7733 0.7738
ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ RCCSD aug-cc-pV7Z RCCSD aug-cc-pV7Z RCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD cc-pVQZ UCCSD (1 cc-pVQZ RCCSD(1) aug-cc-pVQZ UCCSD(1) aug-cc-pVQZ	0.390-9 0.890-9 0.8998 0.9245 0.9247 0.9227 0.9764 0.9764 0.9743 0.9743 0.9745 0.9774 0.9782 0.9782 0.9761 0.9761 0.9761 0.9761 0.9762 0.9761 0.9872 0.9852 0.9852 0.9854 0.9854 0.9866 0.9848	1.5235 1.5218 1.5218 1.5103 1.5102 1.5100 1.3714 1.3704 1.3704 1.3704 1.3705 1.3673 1.3663 1.3663 1.3554 1.3553 1.3537 1.3569 1.3569 1.3548 1.3553		22622 22608 22609 22738 22775 22803 22804 22806 22806 22805 22605 22605 22605 22605 22605 22605 22605 22605 22605 22633 22633 22624 22624 22595 22624 22595 22624	0.7664 0.7656 0.7656 0.7658 0.7645 0.7646 0.7640 0.7740 0.7732 0.7738 0.7727 0.7728 0.7729 0.7734 0.7726 0.7738 0.7729 0.7738 0.7729 0.7738 0.7729 0.7738 0.7729 0.7738
ROHF aug-cc-pV1Z ROHF aug-cc-pV1Z ROHF aug-cc-pV1Z UHF cc-pV2 UHF cc-pV2 UHF cc-pV7Z UHF aug-cc-pV7Z UHF aug-cc-pV2 RCSD cc-pV1Z RCSD cc-pV1Z RCSD cc-pV1Z UCSD aug-cc-pV1Z UCSD aug-cc-pV1Z UCSD cc-pV1Z UCSD cc-pV1Z RCSD(T) cc-pV1Z RCSD(T) cc-pV1Z RCSD(T) cc-pV1Z RCSD(T) cc-pV1Z RCSD(T) cc-pV1Z RCSD(T) aug-cc-pV2 RCSD(T) aug-cc-pV2 RCS	0.3344 0.8909 0.8998 0.2245 0.9247 0.9227 0.9227 0.9766 0.9764 0.9764 0.9764 0.9784 0.9784 0.9784 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9762 0.9852 0.9852 0.9854 0.9866 0.9869 0.9869 0.9869	1.5235 1.5218 1.5218 1.5102 1.5102 1.5102 1.5100 1.3714 1.3714 1.3704 1.3704 1.3673 1.3663 1.3668 1.3553 1.3653 1.3553 1.3553 1.3553 1.3569 1.3548 1.3554 1.3554		22562 22608 22609 22738 22775 22803 22804 22580 22580 22580 22580 22580 22605 22605 22605 22605 22605 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22633 22605 22635 22655	0.7664 0.7656 0.7658 0.7645 0.7645 0.7646 0.7640 0.7740 0.7732 0.7732 0.7738 0.7727 0.7728 0.7724 0.7724 0.7726 0.7733 0.7725 0.7733 0.7723 0.7733 0.7728 0.7733 0.7728 0.7733
ROHF aug-cc-pVTZ ROHF aug-cc-pVTZ ROHF aug-cc-pVQZ UHF cc-pVQZ UHF cc-pVQZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVTZ UHF cc-pVTZ RCSD cc-pVQZ RCSD cc-pVQZ RCSD cc-pVQZ UCSD cc-pVTZ UCSD cc-pVQZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) cc-pVTZ RCSD(T) aug-cc-pVTZ UCSD(T) au	0.3944 0.8909 0.8998 0.9245 0.9245 0.9227 0.9227 0.9227 0.9764 0.9764 0.9764 0.9784 0.9784 0.9784 0.9782 0.9782 0.9782 0.97784 0.97784 0.97784 0.97784 0.97784 0.97784 0.9772 0.9872 0.9852 0.9854 0.9866 0.9866 0.9848 0.9848 0.9848	1.5235 1.5218 1.5218 1.5103 1.5102 1.5100 1.3714 1.3704 1.3705 1.3673 1.3673 1.3663 1.3653 1.3554 1.3553 1.3562 1.3562 1.3563 1.3563 1.3563 1.3563 1.3563 1.3563 1.3553 1.3553		2562 2609 2738 2809 2738 2804 2804 2804 2804 2805 2605 2605 2605 2605 2616 2833 2805 2605 2605 2605 2605 2605 2605 2605 26	0.7664 0.7658 0.7658 0.7645 0.7645 0.7640 0.7740 0.7732 0.7732 0.7728 0.7729 0.7728 0.7724 0.7724 0.7724 0.7724 0.7724 0.7723 0.7732 0.7732 0.7732 0.7732 0.7733 0.7733 0.7733 0.7733

Figure 5. Predicted geometries for **5**, the \tilde{X}^2A' transition state of the H_6^+ molecule in C_s symmetry (transition state **5**). Bond lengths are in angstroms.

Transition State 6 ($C_{2\nu}$ Point Group Symmetry). The optimized geometry for **6** is depicted in Figure 6. Structure **6** represents an isomerization transition state between the two equivalent forms of isomer **2** in terms of an inversion motion of the H_d atom in the H₃⁺ plane. The H_d····H₃⁺ distance for the transition state **6** is significantly longer compared to the corresponding distance of **2**, while the H₂····H₃⁺ intermolecular distance is shorter. The H_c-H_c distance of the H₃⁺ fragment is shorter than that for isolated H₃⁺ (in Figure 7), whereas the H_a-H_c distance is considerably longer. However, the total electron occupation number in the virtual space (0.055) for the transition state **6** is essentially the same as that for isomer **2** (see Table 7).

Dipole Moments

For charged molecules, we define the dipole moment with respect to the center of mass. Structures 1, 3, and 4 have vanishing dipole moments due to their molecular symmetries. The dipole moment of 2 presented in Table 2 markedly decreases with advanced treatments of correlation effects. The 1a' MO describes the σ bonding of the H₃⁺ fragment, while the 1a'' MO is an out-of-plane orbital. The double excitation $(1a')^2 \rightarrow (1a'')^2$ in eqs 11 and 12, therefore, diminishes the polarization of the molecule, since the direction of dipole moment is almost

d		C		L.	b
		C	a	,	b
ROHF cc-pVTZ	2.4791	0.8317	0.9024	1.6279	0.7473
ROHF aug-cc-pVTZ	2.4950	0.8338	0.9001	1.6460	0.7473
ROHF cc-pVQZ	2.4770	0.8328	0.9000	1.6426	0.7466
ROHF aug-cc-pVQZ	2.4947	0.8333	0.8996	1.6455	0.7466
UHF cc-pVTZ	2.4734	0.8317	0.9024	1.6283	0.7473
UHF aug-cc-pVTZ	2.4899	0.8338	0.9001	1.6463	0.7472
UHF cc-pVQZ	2.4718	0.8328	0.8999	1.6430	0.7466
UHF aug-cc-pVQZ	2.4896	0.8333	0.8995	1.6458	0.7466
RCCSD cc-pVTZ	2.3468	0.8235	0.9422	1.4515	0.7612
RCCSD aug-cc-pVTZ	2.3571	0.8260	0.9393	1.4654	0.7613
RCCSD cc-pVQZ	2.3386	0.8252	0.9368	1.4681	0.7601
RCCSD aug-cc-pVQZ	2.3487	0.8259	0.9363	1.4708	0.7602
UCCSD cc-pVTZ	2.3467	0.8235	0.9422	1.4516	0.7612
UCCSD aug-cc-pVTZ	2.3570	0.8260	0.9393	1.4654	0.7613
UCCSD cc-pVQZ	2.3385	0.8252	0.9368	1.4681	0.7601
UCCSD aug-cc-pVQZ	2.3479	0.8259	0.9363	1.4708	0.7602
RCCSD(T) cc-pVTZ	2.3476	0.8214	0.9488	1.4295	0.7624
RCCSD(T) aug-cc-pVTZ	2.3567	0.8239	0.9459	1.4427	0.7624
RCCSD(T) cc-pVQZ	2.3375	0.8232	0.9431	1.4462	0.7612
RCCSD(T) aug-cc-pVQZ	2.3463	0.8239	0.9425	1.4488	0.7613
UCCSD(T) cc-pVTZ	2.3476	0.8214	0.9488	1.4295	0.7624
UCCSD(T) aug-cc-pVTZ	2.3567	0.8239	0.9459	1.4427	0.7624
UCCSD(T) cc-pVQZ	2.3374	0.8232	0.9431	1.4462	0.7612
UCCSD(T) aug-cc-pVQZ	2.3463	0.8239	0.9425	1.4488	0.7613
UCCSDT cc-pVTZ	2.3469	0.8211	0.9500	1.4262	0.7625
UCCSDT aug-cc-pVTZ	2.3558	0.8236	0.9470	1.4392	0.7626

Figure 6. Predicted geometries for **6**, the $\tilde{X}^2 A_1$ transition state of the H_6^+ molecule in C_{2v} symmetry (transition state **6**). Bond lengths are in angstroms.

Figure 7. Predicted geometries for the ground states of the isolated H_2^+ , H_2 , H_3^+ , and H_5^+ molecules. Bond lengths are in angstroms.

parallel to the H_a-H_c axis in the molecular plane. With our most reliable method, aug-cc-pVQZ RCCSD(T), the dipole moment of isomer **2** is predicted to be 1.671 D.

The dipole moment of structure 5, which is an isomerization transition state between 1 and 2, is predicted to be 1.028 D at the aug-cc-pVQZ RCCSD(T) level of theory. The magnitude of this dipole moment is about 0.64 D smaller than that for 2.

Structure **6** in $C_{2\nu}$ symmetry is an inversion transition state for the two equivalent equilibrium structures **2**. The dipole moment of **6** is quite sensitive to the basis set and treatment of correlation effects. Since the direction of the dipole moment for **6** is along the C_2 axis as ${}^{+}\text{H}\cdot\text{H}_{3}\cdot\text{H}_{2}^{-}$, its magnitude is determined by the relative charge separation between the H_a and H_d atoms. Consequently, the $\Phi_4 [(2a_1)^2 \rightarrow (4a_1)^2]$ double excitation in eqs 19 and 20 is mainly responsible for the decrease in the magnitude with increasing treatment of correlation effects.

Harmonic Vibrational Frequencies and Infrared (IR) Intensities

Isomer 1 (see Table 1). The two vibrational frequencies $\omega_1(a_1)$ (3849 cm⁻¹ at the aug-cc-pVQZ CCSD(T) level of

theory) and $\omega_5(b_2)$ (3769 cm⁻¹) modes are assigned to the H–H stretching frequencies of the H₂ fragments, while the $\omega_2(a_1)$ (2087 cm⁻¹) mode is associated with the H-H stretching frequency of the central H2⁺ moiety. These frequencies are significantly lower than the corresponding frequencies at 4400 cm^{-1} (with the aug-cc-pVQZ CCSD method) for isolated H₂ and 2323 \mbox{cm}^{-1} (with the aug-cc-pVQZ UHF method) for $\mbox{H}_2^+,$ respectively. The remaining nine low-frequency vibrations arise from the complexation. Among those nine vibrations the $\omega_3(a_1)$ and $\omega_6(b_2)$ frequencies are of special importance, since they closely reflect the strength of association. The vibrational frequencies of the $\omega_3(a_1)$ and $\omega_6(b_2)$ modes become significantly higher with inclusion of correlation effects, due to the shortening of the $H_2 \cdots H_2^+$ separation. With the aug-cc-pVQZ basis set the $\omega_3(a_1)$ and $\omega_6(b_2)$ frequencies are 840 and 574 cm⁻¹ at the ROHF level of theory, while they are 904 and 1020 cm⁻¹ with RCCSD(T). On the other hand, the degenerate rocking motion $[\omega_7(e)]$ of the H₂⁺ fragment gives rise to the highest vibrational frequency among the remaining six modes. The intensities of the IR active modes (b_2 and e symmetry) are considerable.

Isomer 2 (see Table 2). The H_b - H_b stretching frequency $(\omega_1(a') = 4203 \text{ cm}^{-1} \text{ with the aug-cc-pVQZ CCSD(T) method})$ for 2 is lower than the corresponding frequency (4400 cm^{-1}) of the isolated H_2 molecule, but it is higher than the H_b-H_b stretching frequency (3849 cm^{-1} with the same method) for **1**. The next three high energy frequencies (ω_2 , ω_3 , and ω_4) are associated with the H–H stretching modes of the H_3^+ fragment. The remaining eight frequencies may be attributed to the vibrational modes due to the complexation. The two stretching vibrational frequencies for the intermolecular interactions in 2, $H_2 \cdots H_3^+ [\omega_6(a') = 543 \text{ cm}^{-1}]$ and the $H_e \cdots H_3^+ [\omega_7(a') = 408$ cm⁻¹], are significantly lower than the corresponding frequencies for the two intermolecular interactions in structure 1, $H_2 \cdots H_3^+$ $[\omega_3(a_1) = 904, \omega_6(b_2) = 1020 \text{ cm}^{-1}]$. All 12 vibrational modes are IR active for isomer 2 because of the low symmetry. The three H–H stretching modes ($\omega_2 - \omega_4$) of the H₃⁺ fragment show the strongest IR intensities.

Isomer 3 (see Table 3). The $\omega_1(a')$ and $\omega_4(e')$ frequencies are assigned to the H–H stretching modes of the H₃⁺ fragment. Since the central H–H distances are elongated by the complexation, these two frequencies are lower than the corresponding frequencies for the isolated H₃⁺ molecule. The two outer modes $\omega_2(a'_1)$ and $\omega_5(e')$ are associated with the H····H₃⁺ interactions. These frequencies increase in magnitude with inclusion of correlation effects due to the noticeable decrease of the H····H₃⁺ distance. For isomer **3** only e'-symmetry ($\omega_4-\omega_6$) and a''₂-symmetry (ω_7) modes are IR active. Among the four IR active vibrations the ω_4 mode has the strongest intensity.

Transition State 4 (see Table 4). The $\omega_7(a_u)$ mode for an internal rotation along the $H_2 \cdots H_2^+ \cdots H_2$ axis possesses an imaginary vibrational frequency, confirming that this structure is a transition state for internal rotation. The magnitude of the ω_7 frequency is relatively small and slightly increases with inclusion of correlation effects, reflecting a shortened $H_2^+ \cdots H_2$ distance. The other real vibrational frequencies are very close to those for the global minimum **1**.

Transition State 5 (see Table 5). The $\omega_8(a')$ mode of **5** (admixture of H_e-H_d stretching, $H_aH_cH_d$ bending, and H_a-H_b stretching motion) possesses an imaginary vibrational frequency, characterizing it as a transition state between the two equilibrium structures **1** and **2**. The magnitude of ω_8 drastically decreases with inclusion of correlation effects. The H_b-H_b stretching frequency of **5** (4012 cm⁻¹) lies between the corresponding

TABLE 8: Focal Point Analysis of the Relative Energy (in kcal mol⁻¹) between Isomers 1 and 2^a

basis set	$\Delta E[\text{HF}]$	$+\delta$ [CCSD]	$+\delta$ [CCSD(T)]	$+\delta$ [CCSDT]	$+\delta$ [CCSDTQ]	$+\delta$ [FCI]	$= \Delta E$
cc-pVDZ	-3.69	+8.83	+0.29	+0.08	+0.00	+0.00	[+5.50]
cc-pVTZ	-5.35	+8.89	+0.34	+0.07	+0.00	+0.00	[+3.95]
cc-pVQZ	-5.52	+8.99	+0.36	+0.07	[+0.00]	[+0.00]	[+3.90]
cc-pV5Z	-5.56	+9.00	+0.36	[+0.07]	[+0.00]	[+0.00]	[+3.87]
cc-pV6Z	-5.56	+9.01	+0.36	[+0.07]	[+0.00]	[+0.00]	[+3.88]
CBS LIMIT	[-5.57]	[+9.02]	[+0.36]	[+0.07]	[+0.00]	[+0.00]	[+3.89]

^{*a*} The symbol δ denotes the increment in the relative energy (ΔE) with respect to the preceding level of theory in the hierarchy ROHF \rightarrow CCSD \rightarrow CCSDT \rightarrow CCSDT \rightarrow CCSDTQ \rightarrow FCI. Square brackets signify results obtained from basis set extrapolations or additivity assumptions. Final prediction is boldfaced.

TABLE 9: Focal Point Analysis of the Energy Difference (in kcal mol⁻¹) between Isomers 1 and 3

basis set	$\Delta E[\text{HF}]$	$+\delta$ [CCSD]	$+\delta$ [CCSD(T)]	$+\delta$ [CCSDT]	$+\delta$ [CCSDTQ]	$+\delta$ [FCI]	$= \Delta E$
cc-pVDZ	+80.17	+30.79	+0.39	+0.09	+0.01	+0.00	[+111.45]
cc-pVTZ	+78.57	+33.22	+0.46	+0.09	+0.01	+0.00	[+112.35]
cc-pVQZ	+78.42	+33.84	+0.49	+0.08	[+0.01]	[+0.00]	[+112.84]
cc-pV5Z	+78.38	+33.99	+0.49	[+0.08]	[+0.01]	[+0.00]	[+112.95]
cc-pV6Z	+78.37	+34.05	+0.49	[+0.08]	[+0.01]	[+0.00]	[+113.00]
CBS LIMIT	[+78.36]	[+34.13]	[+0.50]	[+0.08]	[+0.01]	[+0.00]	[+113.08]

TABLE 10: Focal Point Analysis of the H_6^+ Isomerization Reaction Barrier (in kcal mol⁻¹) between Isomers 1 and 2

		•					
basis set	$\Delta E[\text{HF}]$	$+\delta$ [CCSD]	$+\delta$ [CCSD(T)]	$+\delta$ [CCSDT]	$+\delta$ [CCSDTQ]	$+\delta$ [FCI]	$= \Delta E$
cc-pVDZ	+8.97	-1.71	-0.12	-0.02	-0.01	+0.00	[+7.10]
cc-pVTZ	+9.05	-1.56	-0.16	-0.02	-0.01	+0.00	[+7.30]
cc-pVQZ	+9.02	-1.52	-0.16	-0.02	[-0.01]	[+0.00]	[+7.31]
cc-pV5Z	+9.02	-1.50	-0.17	[-0.02]	[-0.01]	[+0.00]	[+7.32]
cc-pV6Z	+9.01	-1.50	-0.17	[-0.02]	[-0.01]	[+0.00]	[+7.32]
CBS LIMIT	[+9.01]	[-1.49]	[-0.17]	[-0.02]	[-0.01]	[+0.00]	[+7.33]

TABLE 11: Focal Point Analysis (kcal mol⁻¹) of the H₆⁺ (in D_{2d} Symmetry, Isomer 1) Dissociation Reaction [H₆⁺ (D_{2d}) \rightarrow 2H₂ + H₂⁺]

basis set	$\Delta E[\text{HF}]$	$+\delta E[\text{CCSD}]$	$+\delta$ [CCSD(T)]	$+\delta$ [CCSDT]	$+\delta$ [CCSDTQ]	$+\delta$ [FCI]	$= \Delta E$
cc-pVDZ	+43.22	+14.23	+0.52	+0.13	+0.01	+0.00	[+58.11]
cc-pVTZ	+41.67	+14.60	+0.68	+0.14	+0.01	+0.00	[+57.09]
cc-pVQZ	+41.64	+14.89	+0.73	+0.14	[+0.01]	[+0.00]	[+57.40]
cc-pV5Z	+41.64	+14.80	+0.74	[+0.14]	[+0.01]	[+0.00]	[+57.32]
cc-pV6Z	+41.66	+14.95	+0.74	[+0.14]	[+0.01]	[+0.00]	[+57.50]
CBS LIMIT	[+41.66]	[+15.16]	[+0.75]	[+0.14]	[+0.01]	[+0.00]	[+57.72]

TABLE 12: Focal Point Analysis (kcal mol⁻¹) of the H_6^+ (in C_s Symmetry, Isomer 2) Dissociation Reaction $[H_6^+ (C_s) \rightarrow H_3^+ + H_2 + H]$

basis set	$\Delta E[\text{HF}]$	$+\delta$ [CCSD]	$+\delta$ [CCSD(T)]	$+\delta$ [CCSDT]	$+\delta$ [CCSDTQ]	$+\delta$ [FCI]	$= \Delta E$
cc-pVDZ	+6.64	+3.61	+0.24	+0.06	+0.01	+0.00	[+10.54]
cc-pVTZ	+6.71	+4.57	+0.35	+0.07	+0.01	+0.00	[+11.71]
cc-pVQZ	+6.93	+4.72	+0.37	+0.07	[+0.01]	[+0.00]	[+12.10]
cc-pV5Z	+6.97	+4.70	+0.38	[+0.07]	[+0.01]	[+0.00]	[+12.12]
cc-pV6Z	+6.99	+4.78	+0.38	[+0.07]	[+0.01]	[+0.00]	[+12.23]
CBS LIMIT	[+6.99]	[+4.90]	[+0.39]	[+0.07]	[+0.01]	[+0.00]	[+12.35]

frequencies of the global minimum 1 (3849 cm⁻¹) and structure 2 (4203 cm⁻¹), reflecting the respective H_b - H_b bond distances.

Transition State 6 (see Table 6). The $\omega_{12}(b_2)$ mode for a $H_d \cdots H_3^+ \cdots H_2$ bending motion displays an imaginary vibrational frequency, indicating a transition state between the two equivalent equilibrium C_s structures **2**. The H_b-H_b stretching frequency ($\omega_1(a_1) = 4166 \text{ cm}^{-1}$) of the transition state **6** is lower than the corresponding frequency [$\omega_1(a') = 4203 \text{ cm}^{-1}$] of **2** due to the longer H_b-H_b bond distance. On the other hand, the H_c-H_c stretching frequency [$\omega_2(a_1) = 3587 \text{ cm}^{-1}$] of **6** is higher than the corresponding frequency [$\omega_2(a') = 3255 \text{ cm}^{-1}$] of **2**, reflecting the shorter H_c-H_c bond length. The ω_5 frequency (293 cm⁻¹) for the $H_d \cdots H_3^+$ stretching mode is significantly lower than the corresponding ω_7 frequency (408 cm⁻¹) of isomer **2**.

Energetics

The total energies for the six H_6^+ structures are presented in Tables 1–6. Focal point analyses for various relative energies between the six structures are provided in Tables 8–12. The DBOC contribution to the energy differences is relatively small (no more than 0.12 kcal mol⁻¹, as shown in Table 13), with estimated uncertainty of ±0.01 kcal mol^{-1.48,66,67} Thus, employing the DBOC to treat non-adiabatic effects should be sufficient to obtain the precision reported herein.

Energy Difference between Isomers 1 and 2. The focal point analysis for the energy separation between 1 and 2 is shown in Table 8. At the ROHF level of theory, 2 is falsely predicted to be the lowest-lying isomer, the energy difference being 5.6 kcal mol^{-1} at the CBS limit. Inclusion of correlation effects, however, reverses

TABLE 13: Relative Energies of the Six H_6^+ Structures According to the Focal Point Analyses, Energies in kcal mol⁻¹

	1	2	3	4	5	6
ΔE	0.00	3.89	113.08	$0.03 \\ -0.07 \\ -0.07$	7.33	5.52
$\Delta E_{Z^{a}}$	0.00	4.18	106.88		5.12	5.09
ΔE_{ZD}^{b}	0.00	4.16	106.92		5.24	5.07

^{*a*} Relative energies with the zero-point vibrational energy corrections. ^{*b*} Relative energies with the zero-point vibrational energy and diagonal Born–Oppenheimer corrections.

the energy ordering and predicts structure 1 to be the global minimum. This feature may be mainly attributed to the electron density shift from the two H₂ fragments (1b₂ MO) to the H₂⁺ (2a₁ MO) fragment, as shown in Table 7.

The increments of energy difference beyond the ROHF approximation are +9.02[CCSD], +0.36[CCSD(T)], +0.07[CCSDT], +0.00[CCSDTQ], and +0.00 kcal mol⁻¹ (FCI). The marked increment at the CCSD level of theory is in agreement with the pronounced predicted blue shifts of the two H₂····H₂⁺····H₂ stretching frequencies [$\omega_3(a_1)$ and $\omega_6(b_2)$]. Since the H₆⁺ cluster has only five electrons, the correlation effects beyond triple excitations appear to be small. Although the cc-pVDZ basis set alone is inadequate for a precise description of relative energy, very little basis set sensitivity is observed with larger bases; the cc-pVDZ, however, is able to describe the higher-order excitations effectually as demonstrated by the CCSDT–CCSD(T) increments computed with the cc-pVDZ and cc-pVTZ basis sets. At the FCI-CBS limit isomer **2** is predicted to lie 3.9 ± 0.1 kcal mol⁻¹ above isomer **1**.

Energy Separation between Isomers 1 and 3. Our focal point analysis for the energy difference between 1 and 3 is presented in Table 9. At all levels of theory structure **3** is determined to be higher lying than **1**. The CCSD-HF energy increment (+34.1 kcal mol⁻¹ at the CBS limit) is much larger than the corresponding value for the **1** – **2** energy separation value (+9.0 kcal mol⁻¹ at the CBS limit) in Table 8, due to the difference in spin multiplicity; the in balance in the number of paired electrons results in different correlation energies for the two species, since correlation is primarily an opposite spin phenomenon. As before, very little basis set sensitivity is observed for the reaction energy. At the FCI-CBS limit the quartet isomer **3** is predicted to lie 113.1 \pm 0.1 kcal mol⁻¹ above isomer **1**.

Energy Barrier for the Isomerization Reaction between 1 and 2. The energy barrier for the forward isomerization reaction

$$\mathbf{1}(\text{equil}) \rightarrow \mathbf{5}(\text{TS}) \rightarrow \mathbf{2}(\text{equil}) \tag{21}$$

based on the FPA is provided in Table 10. At the ROHF level of theory, the barrier height is predicted to be 9.0 kcal mol⁻¹. With inclusion of correlation effects the transition state (structure **5**) is preferentially stabilized relative to **1**. This finding is supported by the fact that the total electron occupation number in the virtual MOs (0.064) for the transition states (structure **5**) is noticeably larger than the corresponding value (0.045) for the global minimum **1**. The final barrier height for the isomerization reaction is predicted to be 7.3 ± 0.1 kcal mol⁻¹ at the FCI-CBS limit. Using the results in Tables 8 and 10, the energy barrier for the reverse isomerization reaction (isomer **2** \rightarrow isomer **1**) is predicted to be 3.4 ± 0.1 kcal mol⁻¹.

Dissociation Energy for the Global Minimum 1. The energy for the fragmentation of **1**

$$H_6^+(D_{2d}) \rightarrow 2H_2 + H_2^+$$
 (22)

based on the FPA is displayed in Table 11. With the HF method the equilibrium dissociation energy (D_e) is computed to be 41.7 kcal mol⁻¹ at the CBS limit. With an advanced treatment of correlation effects the dissociation energy further increases as much as 16.1 kcal mol⁻¹, reflecting the greater correlation energy of complex **1** compared to its separated constituents. At the FCI-CBS limit the D_e of isomer **1** is determined to be 57.7 \pm 0.1 kcal mol⁻¹, and the zero-point dissociation energy (D_0) is predicted to be 50.9 \pm 0.1 kcal mol⁻¹.

Dissociation Energy for Structure 2. The energy for the structurally straightforward fragmentation of isomer **2**

$$H_6^+(C_s) \to H_3^+ + H_2 + H$$
 (23)

based on the FPA is given in Table 12. At the HF level of theory the D_e is determined to be 7.0 kcal mol⁻¹ at the CBS limit. With inclusion of correlation effects the D_e inevitably increases, by as much as 5.4 kcal mol⁻¹. At the FCI-CBS limit the D_e of isomer **2** is predicted to be 12.4 \pm 0.1 kcal mol⁻¹, compare with the D_0 value 8.3 \pm 0.1 kcal mol⁻¹.

In this regard, the equilibrium dissociation energies for the following two dissociation reactions

$$H_5^+(C_{2\nu}) \to H_3^+ + H_2$$
 (24)

and

$$H_6^+(C_s) \to H_5^+ + H$$
 (25)

are predicted to be $D_e = 9.2 \pm 0.1$ and 3.1 ± 0.1 kcal mol⁻¹, and $D_0 = 6.4 \pm 0.1$ and 1.8 ± 0.1 kcal mol⁻¹, consistent with the D_0 value of H_5^+ by Spirko, Amano, Kraemer.⁶⁸ It is clearly seen that the complexation energy between H_3^+ and H_2 in eq 24 is almost three times stronger than that between H_5^+ and H in eq 25. This is consistent with the higher frequency of the $H_2 \cdots H_3^+$ stretching mode [$\omega_6(a') = 543 \text{ cm}^{-1}$] relative to the $H \cdots H_3^+$ stretching mode [$\omega_7(a') = 408 \text{ cm}^{-1}$] for isomer 2 (in Table 2). By comparison of the results in Tables 11 and 12, the dissociation energy of 1 (in D_{2d} symmetry) is seen to be over 42 kcal mol⁻¹ higher than the corresponding value for 2 (in C_s symmetry).

Concluding Remarks

Ab initio molecular electronic structure theory has been employed in order to systematically investigate six stationary points of the H₆⁺ hydrogen cluster cation. Full geometrical optimizations have been carried out using highly correlated CCSD, CCSD(T), and CCSDT wave functions and a variety of correlation-consistent cc-pVXZ and aug-cc-pVXZ (where X = D, T, Q) basis sets. Three equilibrium structures (minima, 1–3) and three transition states (first-order saddle points, 4–6) for isomerization reactions have been located. CCSD, CCSD(T), CCSDTQ, and Full CI methods have been used with basis sets as large as sextuple zeta to establish critical energy differences. The H₂⁺-core cluster with D_{2d} symmetry has been confirmed to be the global minimum on the H₆⁺ PES. After extensive focal point analyses the following energetics have been deduced: (1) the relative energies of the six structure are summarized in Table 13; (2) the global minimum (the H_2^+ -core cluster, isomer 1) lies 3.9 (4.2) \pm 0.1 kcal mol⁻¹ below the second-lowest minimum (the H_3^+ -core cluster, isomer 2), with the ZPVE correction in parentheses; (3) the quartet state isomer 3 with D_{3h} symmetry lies 113.1 (106.9) \pm 0.1 kcal mol⁻¹ above isomer 1; (4) the energy barrier for the most important isomerization reaction $(1 \rightarrow 2)$ is 7.4 (5.2) ± 0.1 kcal mol⁻¹; (5) the dissociation energy for the global minimum 1 $[H_6^+ (D_{2d}) \rightarrow$ $2H_2 + H_2^+$] is 57.5 (50.9) ± 0.1 kcal mol⁻¹; (6) the dissociation energy for isomer 2 $[H_6^+(C_s) \rightarrow H_3^+ + H_2 + H]$ is 12.3 (8.3) \pm 0.1 kcal mol⁻¹; and (7) given the low energy of structure 4, the equilibrium structure 1 is expected to be highly fluxional.

Acknowledgment. Q.H. thanks the support by the China Scholarship Council (File No. 2008604057) and the University of Georgia Center for Computational Quantum Chemistry for hospitality during his one year visit. We thank Mr. Tongxiang Lu, Ms. Qunyan Wu, Dr. Francesco A. Evangelista, and Dr. Justin M. Turney for many helpful discussions. This research was supported by National Natural Science Foundation of China (No. 20773016) and the U.S. Department of Energy, Office of Basic Energy Sciences, Grant No. DE-FG02-00ER14748.

References and Notes

- (1) Thomson, J. J. Philos. Mag. 1912, 24, 209.
- (2) Pfeiffer, G. V.; Huff, N. T.; Greenawalt, E. M.; Ellison, F. O. J. Chem. Phys. 1967, 46, 821.
 - (3) Poshusta, R. D.; Matsen, F. A. J. Chem. Phys. 1967, 47, 4795.
 - (4) Buchheit, K.; Henkes, W. Z. Angew. Phys. 1968, 24, 191.
 - (5) Clampitt, R.; Gowland, L. Nature 1969, 223, 815.
- (6) van Deursen, A.; Reuss, J. Int. J. Mass Spectrom. Ion Phys. 1973, 11, 483.
- (7) van Lumig, A.; Reuss, J. Int. J. Mass Spectrom. Ion Phys. 1978, 27 197
- (8) Wright, L. R.; Borkman, R. F. J. Chem. Phys. 1982, 77, 1938.
- (9) Kirchner, N. J.; Gilbert, J. R.; Bowers, M. T. Chem. Phys. Lett. 1984, 106, 7.
 - (10) Montgomery, J. A.; Michels, H. H. J. Chem. Phys. 1987, 87, 771.
 (11) Kirchner, N. J.; Bowers, M. T. J. Chem. Phys. 1987, 86, 1301.

 - (12) Kirchner, N. J.; Bowers, M. T. J. Phys. Chem. 1987, 91, 2573
- (13) Paul, W.; Schlemmer, S.; Lucke, B.; Gerlich, D. Chem. Phys. 1996, 209.265
- (14) Stich, I.; Marx, D.; Parrinello, M.; Terakura, K. Phys. Rev. Lett. 1997, 78, 3669
- (15) Štich, I.; Marx, D.; Parrinello, M.; Terakura, K. J. Chem. Phys. 1997, 107, 9482.
 - (16) Kurosaki, Y.; Takayanagi, T. J. Chem. Phys. 1998, 109, 4327.
 - (17) Kurosaki, Y.; Takayanagi, T. Chem. Phys. Lett. 1998, 293, 59
 - (18) Suter, H. U.; Engels, B.; Lunell, S. Adv. Quantum Chem. 2001,
- 40, 133. (19) Kumada, T.; Tachikawa, H.; Takayanagi, T. Phys. Chem. Chem.
- Phys. 2005, 7, 776. (20) Kumada, T.; Takayanagi, T.; Kumagai, J. J. Mol. Struct. 2006, 786,
- 130
- (21) Kumagai, J.; Inagaki, H.; Kariya, S.; Ushida, T.; Shimizu, Y.; Kumada, T. J. Chem. Phys. 2007, 127, 024505.
- (22) Kakizaki, A.; Takayanagi, T.; Shiga, M. Chem. Phys. Lett. 2007, 449.28.
- (23) Shimizu, Y.; Kumada, T.; Kumagai, J. J. Magn. Reson. 2008, 194, 76.
- (24) Jaksch, S.; Mauracher, A.; Bacher, A.; Denifl, S.; da Silva, F. F.; Schöbel, H.; Echt, O.; Märk, T. D.; Probst, M.; Bohme, D. K.; Scheier, P.
- J. Chem. Phys. 2008, 129, 224306 (25) Kurosaki, Y.; Shimizu, Y.; Kumagai, J. Chem. Phys. Lett. 2008,
- 455, 59.
- (26) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.

- (27) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
- (28) Peterson, K. A.; Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1994, 100, 7410.
 - (29) Čižek, J. J. Chem. Phys. 1966, 45, 4256.
 - (30) Bartlett, R. J. Annu. Rev. Phys. Chem. 1981, 32, 359.
 - (31) Bartlett, R. J. J. Phys. Chem. 1989, 93, 1697
 - (32) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
- (33) Scuseria, G. E.; Scheiner, A. C.; Lee, T. J.; Rice, J. E.; Schaefer, H. F. J. Chem. Phys. 1987, 86, 2881.
 - (34) Rittby, M.; Bartlett, R. J. J. Phys. Chem. 1988, 92, 3033.
- (35) Gauss, J.; Lauderdale, W. J.; Stanton, J. F.; Watts, J. D.; Bartlett, R. J. Chem. Phys. Lett. 1991, 182, 207.
- (36) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
- (37) Bartlett, R. J.; Watts, J. D.; Kucharski, S. A.; Noga, J. Chem. Phys. Lett. 1990, 165, 513.
- (38) Watts, J. D.; Gauss, J.; Bartlett, R. J. Chem. Phys. Lett. 1992, 200, 1.
- (39) Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718
 - (40) Stanton, J. F. Chem. Phys. Lett. 1997, 281, 130.
 - (41) Noga, J.; Bartlett, R. J. J. Chem. Phys. 1987, 86, 7041.
 - (42) Scuseria, G. E.; Schaefer, H. F. Chem. Phys. Lett. 1988, 152, 382.
 - (43) Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1990, 93, 6104.
 - (44) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053.
 - (45) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1985, 115, 259.
 - (46) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.
 - (47) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514.
- (48) Handy, N. C.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1986, 84, 4481.
- (49) East, A. L. L.; Allen, W. D. J. Chem. Phys. 1993, 99, 4638.
- (50) Császár, A. G.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1998, 108.9751.
- (51) Gonzales, J. M.; Pak, C.; Cox, R. S.; Allen, W. D.; Schaefer, H. F.; Császár, A. G.; Tarczay, G. Chem.-Eur. J. 2003, 9, 2173.
- (52) Kenny, J. P.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 2003, 118, 7353.
- (53) Schuurman, M. S.; Muir, S. R.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 2004, 120, 11586.
 - (54) Oliphant, N.; Adamowicz, L. J. Chem. Phys. 1991, 95, 6645.
 - (55) Kucharski, S. A.; Bartlett, R. J. J. Chem. Phys. 1992, 97, 4282.
 - (56) Knowles, P. J.; Handy, N. C. Chem. Phys. Lett. 1984, 111, 315.
 - (57) Feller, D. J. Chem. Phys. 1993, 98, 7059.
- (58) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639.
- (59) Gauss, J.; Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1991, 95, 2623.
 - (60) Gauss, J.; Stanton, J. F. Chem. Phys. Lett. 1997, 276, 70.
 - (61) Gauss, J. J. Chem. Phys. 2002, 116, 4773.

(62) Stanton, J. F.; Gauss, J.; Watts, J. D.; Szalay, P. G.; Bartlett, R. J. With contributions fromAuer, A. A.; Bernholdt, D. E.; Christiansen, O.; Harding, M. E.; Heckert, M.; Heun, O.; Huber, C.; Jonsson, D.; Jusélius, J.; Lauderdale, W. J.; Metzroth, T.; Michauk, C.; O'Neill, D. P.; Price, D. R.; Ruud, K.; Schiffmann, F.; Tajti, A.; Varner, M. E.; Vázquez, J.; and the integral packages: MOLECULE (Almlöf, J.; Taylor, P. R.), PROPS (Taylor, P. R.), and ABACUS (Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.). Current version see http://www.aces2.de.

(63) Stanton, J. F.; Gauss, J.; Watts, J. D.; Lauderdale, W. J.; Bartlett, R. J. Int. J. Quantum Chem. 1992, 44 (S26), 879.

(64) Werner, H.-J. MOLPRO, version 2006. 1, a package of ab initio programs. See: http://www.molpro.net.

(65) Crawford, T. D.; Sherrill, C. D.; Valeev, E. F.; Fermann, J. T.; King, R. A.; Leininger, M. L.; Brown, S. T.; Janssen, C. L.; Seidl, E. T.; Kenny, J. P.; Allen, W. D. J. Comput. Chem. 2007, 28, 1610.

(66) Ioannou, A. G.; Amos, R. D.; Handy, N. C. Chem. Phys. Lett. 1996, 251, 52.

(67) Valeev, E. F.: Sherrill, C. D. J. Chem. Phys. 2003, 118, 3921.

(68) Špirko, V.; Amano, T.; Kraemer, W. P. J. Chem. Phys. 2006, 124, 244303.

JP905928U